Connect with us

Published

on

Lithium-ion batteries are the most common battery in consumer electronics. They are used in everything from cellphones to power tools to electric cars and more. However, they have well defined characteristics that cause them to wear out, and understanding these characteristics can help you to double the life of your batteries — or more. This is especially useful for products that do not have replaceable batteries.

Battery wear is loss of capacity and/or increased internal resistance. The latter is not a well-known concept, but over time the battery is able to put out less amperage as the battery ages, and eventually the battery is unable to generate power quickly enough to operate the appliance at all even though the battery is not empty.

The standard disclaimers apply, all advice is for informational purposes only, CleanTechnica is not responsible for any damages caused by inaccurate information or following any advice provided. Also, new technology may change the characteristics spoken about, making them less or more relevant in the future or even rendering them obsolete.


Lithium batteries age from the following factors:

These articles explain each facet in detail and are worth reviewing if you’re interested in understanding the logic behind the following recommendations.

Time

Try to buy batteries when you need them, because lithium ion ages from the moment it leaves the assembly line. However, by following the recommendations below you can get a longer lifetime from the batteries you own. If possible, look for the date stamp on any battery powered item you intend to buy and try get the newest one. Often you will find it on there, either on the outside of the package or on the item itself.

Charging Cycles

One cycle is fully charging the battery and then fully draining it. Lithium-ion batteries are often rated to last from 300-15,000 full cycles. However, often you don’t know which brand/model of battery is in the item you buy.

Partial cycles will give you many more cycles before the battery wears out, so when possible do partial discharges and then recharge. Don’t intentionally drain a battery before recharging for lithium-ion batteries.

For some equipment this is not realistic, in electric lawnmowers and other outdoor tools for example, but the manufacturer will hopefully have selected a battery chemistry designed for this use case.

Storage/Operating Temperature

Try to keep your batteries cool whenever possible. Don’t store a cellphone or other portable lithium battery in a car on a hot day, and keep them cool when not in use (bring your portable tool batteries inside instead of leaving them in an unconditioned shed/garage). Park an electric vehicle in the shade or a reasonable temperature garage when possible. Many EVs have active cooling of batteries so that will take care of this for you, although you still save battery power by parking in the shade or a conditioned garage.

Also, your pocket is about 30ºC, so store your cellphone on a desk and out of direct sunlight if you’re in the office or at home when practical.

Charging Characteristics

Charge your battery at a slow rate when possible. For a cellphone, use a charger that is rated for about 1/4 of the battery capacity if you can. Avoid quick charging except for rare instances when you absolutely need the most juice as quickly as possible. Charging at 1/2 its capacity per hour is acceptable but chargers that can charge a phone in under 1.5 hours from empty can be very hard on the battery.

For power tools, try to get a slow charger instead of the quick chargers many of them come with. This is not always possible, but often is.

Don’t leave any device connected to the charger once charging is complete. In fact, you should aim to charge to a maximum of 80% (more on that below).

Discharging Characteristics

Try not to abuse your battery by pulling as much power as quickly from it as possible. For an EV, flooring the acceleration pedal on a regular basis is not good for the battery. Similarly, power hungry games can drain cellphone batteries quite quickly as well. If your phone gets hot from high power use (and not the sun or high room temperature), it is an indication that you are punishing the battery.

Sometimes taking it easy on batteries is not always possible because some products, such as lithium-ion powered tools, are hard on the battery by design (drills, lawnmower, snowblowers, etc.). In these cases, manufacturers will typically use batteries designed for high drain rates (but have lower capacity), but anything you can do to be gentle on even these batteries will pay dividends in longer life. For power banks, try to use the power at a moderate rate. USB models can be tricky to limit your current draw rate as a phone or tablet will draw what it wants up to the bank limit, but for non-USB items you can often try to limit how quickly it’s drawing power.

Also you can “hack” this issue by buying and using a larger capacity battery if your device can handle it. For the same power draw, a larger capacity battery will have a lower percent drain per hour. This also reduces cycle count.

For items you don’t use daily, check on your batteries from time to time in case they are draining themselves when not in use. For EVs and cellphones, this is not a noticeable problem, but for power tools and power banks it is a good idea to check on the battery every few months (or weeks if it drains itself quickly) and top it up to 50%-ish for storage.

Depth Of Charge

Unlike most other battery types (especially lead acid), lithium-ion batteries do not like being stored at high charge levels. Charging and then storing them above 80% hastens capacity loss. So charge the battery to 80% or a bit less if that will get you through the day/week. Most EVs have the ability to select a percentage to charge up to in the software.

Charging above 80% is not a big problem if you intend to draw it down quickly and need the full capacity. Of course, try not to do this regularly if you don’t have to. Avoid overnight charging of your phone unless it has a smart charging feature, such as some Apple phones. For Android phones, use Accubattery software or similar, which will beep at 80% charge as a reminder to unplug the cord. Charge to full in the morning if needed to get through the day.

Similarly, for your EV if you have a long driving day planned, setting the software to charge to full by morning (not storing the vehicle overnight at full) and driving until you are below 80% rather quickly will not cause much extra wear to your batteries.

In general, it’s the storage time above 75-80% that causes most of the extra high charge wear.

For storing batteries long term, charge them to about 50% and check on them every now and then.

Depth Of Discharge

According to many sources, lithium-ion doesn’t like being fully discharged. So try to avoid draining your batteries below about 25% when possible. If unavoidable, then charge it back up to above 25% as soon as possible so the time spent near empty is minimized.

Miscellaneous Battery Information

  • Lithium-ion batteries have no memory effect. This was a facet of Nickel Cadmium batteries that went out of style decades ago, yet this is a surprisingly common question people ask about any rechargeable battery.
  • Most name-brand devices use quality name-brand batteries, but some devices (such as cheap power banks or no-name products) use off-brand or grey market batteries that will not last for years no matter how much you baby them. Try to avoid buying products with these batteries because the money you save buying them translates into reduced product life.
  • For some devices, the charge gauge can fall out of calibration and give you incorrect readings. This can typically be fixed by either fully charging or fully discharging then recharging the battery back to full. However this is hard on the battery, so it’s not something you want to do regularly, but in the rare instance that this is the cause of your issues, then a full charge or charge-discharge cycle will solve it. Quickly draw the battery back down to 80% before putting it back in service.
  • Everything stated above is quite generalized, and with the various battery chemistries on the market, all of them have slightly different characteristics. Once facet may be stronger in one chemistry vs. another but in general the advice provided is applicable to all lithium battery chemistries.

End Of Life (EOL)

End of life for a lithium-ion battery typically occurs when the battery can no longer perform the function the user requires of it. Commercially, when a battery (pack) has reached 80% of its design capacity it is considered EOL, but for end users, it’s typically looked at as when the device (or battery pack) becomes unusable.

When your battery starts acting funny, it can mean it’s ready to be retired. Some Apple phones have the ability to calculate capacity remaining (it is buried in the settings) and Accubattery for Android can do the same thing if installed and used for at least a week.

These are some of the strange quirks you may run into that can occur with worn out lithium-ion batteries:

  • Device shuts down stating low battery even though it should have plenty of runtime left, even if it stated a decent percent charge remaining just minutes before
  • The battery percentage meter drops randomly
  • Charging finishes prematurely even though the battery did not accept much power
  • Sudden capacity drops without warning
  • Self-discharge rate soars and is often uneven
  • The battery (pack) gets very hot during charging (sometimes the charger shuts down due to this)
  • Pouch batteries can start bulging (seen on some cell phones)

Be sure to recycle all batteries at the end of their life as they contain valuable materials that can be recycled into new batteries.


A summary of the terminology used in the battery world:

Charging algorithm = Battery is charged at Constant Current, then near full charge (typically over 80%) the charger switches to Constant Voltage. The charging rate slows until the battery reaches 100% charge. Many EVs modify this algorithm.

C = Capacity of the battery

  • Battery ability to output power is measured in 1/C. 1C means the battery drained in one hour, 2C means 30 minutes (1/2 hour), 3C means empty in 20 minutes (1/3 of an hour) and so forth.
  • Charging can also be measured in C, 1C means charged in 1 hour, 0.5C charged in 2 hours, 2C charged in 30 minutes and so forth.
    Charge rates are not typically linear, the battery is typically charged more rapidly until it reaches the Constant Voltage stage.

Series = Multiple batteries linked in a chain to increase the total voltage of the pack.

Parallel = Multiple batteries linked side by side to increase amperage instead of voltage.

(x)S(x)P configuration = explains how multiple batteries are linked. 4S2P for example means 8 cells, four in Series and two Parallel rows

Volts (V) = Electric potential. Power outlets are measured in volts.

Amps (A)= Number of Coulombs of electrons carrying those volts.

Watts (W)= Volts x Amps. Energy/Power usage is often measured in watts. A kilowatt is 1000 watts. kWh is Kilowatts per hour.

Energy is measured in Joules and is convertible to Watts/second if you have a time component.

Power = Energy over Time. Typically measured in Watts. One Joule per second is 1 watt. The same number of Joules or Watts in half the time is twice the power.

Nominal voltage = Voltage used to calculate Watts of a battery.

Battery capacity = How many Ah of power the battery can output (when new).

Load = Device that uses the power from the battery.

Internal resistance of a battery affects its Power output. Increased internal resistance is the reduction in rate of Power output the battery can deliver. Energy output is affected somewhat by increased internal resistance.



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Tesla and Rivian are settling their battery tech theft lawsuit

Published

on

By

Tesla and Rivian are settling their battery tech theft lawsuit

Tesla and Rivian have been embroiled in a lawsuit in which the former accused the latter of having stolen battery technology by poaching Tesla employees.

It sounds like the two automakers are finally about to settle the lawsuit, which has been going on for 4 years.

In 2020, Tesla filed a lawsuit against Rivian over allegedly stealing trade secrets by hiring former Tesla employees and encouraging them to bring documents. Rivian has denied the allegations.

When Tesla filed the lawsuit, it wasn’t clear what trade secrets Tesla was claiming Rivian had stolen. However, we noted that the employees listed in the lawsuits were two recruiters, an EHS manager, and a manager of Tesla’s charging networks.

The automaker claimed that these employees brought “documents consisting of highly sensitive trade secret, confidential, and proprietary engineering information” when they went to work for Rivian.

A year later, Tesla expanded the lawsuitclaiming more specifically that Rivian was “stealing the core technology for its next-generation batteries.”

At first, the companies tried to settle out of court, but it didn’t work out, so the lawsuit was moved to court last year.

Over a year later, we now learn that Tesla had notified the court that it expects to file to get the lawsuit dismissed after reaching a conditional agreement with Rivian. The company didn’t disclose the details of the settlement (via Bloomberg):

Tesla didn’t disclose specifics about the agreement in a court filing, but told a California state judge that it expects to seek dismissal of the case by Dec. 24 upon satisfactory completion of the terms.

Neither Tesla nor Rivian have commented on the reported settlement.

While Tesla has claimed that it somewhat open-sourced its patents, we have previously noted that it’s not exactly the case. Tesla claims to let other companies use its patented technology as long as they themselves don’t sue them over patent rights.

And in this specific case, Tesla alleges that Rivian has specifically hired employees to steal technologies. Again, Rivian has denied the allegation.

Electrek’s Take

The terms are unknown, but in similar cases, it often involves things like some level of access to make sure that no proprietary technology is being used or has been used.

The lawsuit is not exactly clear, but based on the timeline and the allegations of “next-gen batteries”, Tesla could have been talking about its 4680 battery cells, although those are cells. It could also be the structural battery pack.

Rivian is expected to use a taller 4695 battery from LG Energy Solutions for its next-generation vehicles.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Kempower, Proviridis partner on novel electric semi truck charging solution

Published

on

By

Kempower, Proviridis partner on novel electric semi truck charging solution

French infrastructure specialists Proviridis have partnered with EVSE manufacturer Kempower to deliver a novel, underground charging solution for electric semi trucks designed to easily integrate into existing truck depots.

By installing its high-powered charging cabinets underground and integrating the charging cables into a solid metal pipe, Kempower and Proviridis have been able to make room for high-powered charging points in an existing truck depot that didn’t have enough space to install either conventional EVSE or overhead “drop lines.”

For the pilot, the metal pipe is painted in a striking yellow color to make it easier to see while maneuvering the lot, and keeping the dispensers themselves more protected than conventional concrete bollards. The 600 kW power cabinet is positioned a few yards away – a typical space-saving Kempower solution – and connected to the charge points by underground cable.

Proviridis believes their solution provides enough of a competitive advantage that fleet buyers looking to electrify will be eager to give it a try.

“The product is durable across a wide spectrum of temperatures and conditions, requires minimal ventilation, and can cater for a wide range of customer needs,” explains Olivier Verdu, Technical Director at Proviridis. “These are features which perfectly place the Kempower solution for this type of charging configuration in a logistics environment.”

Electrek’s Take

While traditional charging equipment can cause up to 20% of an existing truck depot’s parking capacity to be lost, the Kempower products have already gained recognition for the efficient size footprint of its overground Satellites. If this underground version proves to be even better, you can expect to see a lot more Kempower installations near you.

SOURCE | IMAGES: Kempower.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

For a limited time, save $500 on a Centris folding eBike from Buzz Bicycles

Published

on

By

For a limited time, save 0 on a Centris folding eBike from Buzz Bicycles

In honor of Black Friday and Cyber Monday, eBike specialist Buzz Bicycles is offering an exclusive discount for Electrek readers on its Centris Class 2 Folding Bike.

Table of contents

Buzz Bicycles is back with an exclusive new deal

Buzz Bicycles has been a mainstay on Electrek for a few years now, as we have covered several of its electric bikes, which suit riders of all skill levels and help them “Buzz through life.” Buzz is an omnichannel eBike brand that prioritizes direct-to-consumerism and has found success in its mission to deliver ultimate transportation solutions at an excellent value for its growing base of eBike enthusiasts.

The company strives to deliver riders a “Wow moment,” which is usually brought on as they feel the pedal assist function kick in. This feature delivers all you need to conquer hills and longer rides while enjoying new adventures with friends.

The Buzz team has utilized decades of industry experience into its portfolio of eBikes, all conceived and designed in Dayton, Ohio. The company, which operates under the United Wheels umbrella alongside brands like Huffy Bicycles, Niner Bikes, and Batch Bicycles, has adopted an ethos that the freedom of riding should be fun and accessible for everyone, no matter what adventure lies ahead.

By leveraging the global presence of its parent company, Buzz Bicycles can make good on its promise to deliver affordable eBikes that are comfortable, powerful, and safe, much like the Centris Folding eBike, which is as versatile and compact as it is fun. The exclusive deal Buzz Bicycles is offering on the Centris makes it even more fun. You can take advantage of it below.

But first, you’ll want to learn about the capabilities of this foldable eBike to truly understand its value, as well as what accessories are available to level up your purchase.

Buzz Bicycles

The Buzz Centris is an easy to ride foldable eBike for all

The Buzz Centris is a Class 2 Folding eBike built for comfort and convenience no matter where you take it. At full size, the Centris’ step-through frame offers a low step-over height of just 16 inches, perfect for riders of all sizes, enabling easy transitions from ground to saddle for its riders.

When you’re not riding, the Centris from Buzz Bicycles folds neatly to 34 inches in length and 22 inches in height, making it easy to store at home or to carry in a vehicle on the way to your next ride. Furthermore, the assembled bike only weighs 68 pounds, making it easy to transport.

You can easily navigate tougher terrain on the Centris thanks to the eBike’s 20″ x 4″ knobby tires and front suspension. The bike is powered by a 48V, 500-watt-hour (Wh) battery pack that can propel it to a top speed of 20 mph for an all-electric range of up to 40 miles on a single charge.

Additionally, this folding model from Buzz Bicycles comes equipped with both a front and rear rack, offering versatile cargo-carrying options so you can customize your ride with a variety of Buzz accessories.

Like all Buzz eBikes, the Centris is tested and deemed compliant with the UL2849 standard. This standard covers the entire electric bicycle system, including the motor, battery, controller, and charger, offering the highest safety standards for added peace of mind.

The Centris Class 2 folding bike from Buzz is available in two colors: Gloss White or Matte Black. This $1,199 eBike is currently reduced to $899 – and you can score an additional $200 off with this exclusive promo, but only for a limited time.

With the purchase of any Buzz eBike, including the Centris, you are guaranteed the following:

  • 10-year limited warranty (lightweight aluminum frame protected for full 10 years)
  • 2-year limited warranty (electrical components covered by 2-year warranty for peace of mind)
  • 6-month limited warranty (additional bike components protected by a 6-month warranty)
Buzz Bicycles

Are you interested in the Centris from Buzz Bicycles? You’ve come to the right place. Starting today, while supplies last, you can take advantage of an additional $200 off the sale price by using promo code “ELECTREK200. That’s a $500 discount in total!

Don’t wait, because this deal only runs through 11:59 PM on December 8, 2024.

We highly recommend perusing Buzz’s entire lineup of products. They are designed for commuters and casual riders, with technology and features that help you quickly feel comfortable riding. If you are new to the world of E-transportation, Buzz Bicycles is the brand for you. 

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending