Connect with us

Published

on

Lithium-ion batteries are the most common battery in consumer electronics. They are used in everything from cellphones to power tools to electric cars and more. However, they have well defined characteristics that cause them to wear out, and understanding these characteristics can help you to double the life of your batteries — or more. This is especially useful for products that do not have replaceable batteries.

Battery wear is loss of capacity and/or increased internal resistance. The latter is not a well-known concept, but over time the battery is able to put out less amperage as the battery ages, and eventually the battery is unable to generate power quickly enough to operate the appliance at all even though the battery is not empty.

The standard disclaimers apply, all advice is for informational purposes only, CleanTechnica is not responsible for any damages caused by inaccurate information or following any advice provided. Also, new technology may change the characteristics spoken about, making them less or more relevant in the future or even rendering them obsolete.


Lithium batteries age from the following factors:

These articles explain each facet in detail and are worth reviewing if you’re interested in understanding the logic behind the following recommendations.

Time

Try to buy batteries when you need them, because lithium ion ages from the moment it leaves the assembly line. However, by following the recommendations below you can get a longer lifetime from the batteries you own. If possible, look for the date stamp on any battery powered item you intend to buy and try get the newest one. Often you will find it on there, either on the outside of the package or on the item itself.

Charging Cycles

One cycle is fully charging the battery and then fully draining it. Lithium-ion batteries are often rated to last from 300-15,000 full cycles. However, often you don’t know which brand/model of battery is in the item you buy.

Partial cycles will give you many more cycles before the battery wears out, so when possible do partial discharges and then recharge. Don’t intentionally drain a battery before recharging for lithium-ion batteries.

For some equipment this is not realistic, in electric lawnmowers and other outdoor tools for example, but the manufacturer will hopefully have selected a battery chemistry designed for this use case.

Storage/Operating Temperature

Try to keep your batteries cool whenever possible. Don’t store a cellphone or other portable lithium battery in a car on a hot day, and keep them cool when not in use (bring your portable tool batteries inside instead of leaving them in an unconditioned shed/garage). Park an electric vehicle in the shade or a reasonable temperature garage when possible. Many EVs have active cooling of batteries so that will take care of this for you, although you still save battery power by parking in the shade or a conditioned garage.

Also, your pocket is about 30ºC, so store your cellphone on a desk and out of direct sunlight if you’re in the office or at home when practical.

Charging Characteristics

Charge your battery at a slow rate when possible. For a cellphone, use a charger that is rated for about 1/4 of the battery capacity if you can. Avoid quick charging except for rare instances when you absolutely need the most juice as quickly as possible. Charging at 1/2 its capacity per hour is acceptable but chargers that can charge a phone in under 1.5 hours from empty can be very hard on the battery.

For power tools, try to get a slow charger instead of the quick chargers many of them come with. This is not always possible, but often is.

Don’t leave any device connected to the charger once charging is complete. In fact, you should aim to charge to a maximum of 80% (more on that below).

Discharging Characteristics

Try not to abuse your battery by pulling as much power as quickly from it as possible. For an EV, flooring the acceleration pedal on a regular basis is not good for the battery. Similarly, power hungry games can drain cellphone batteries quite quickly as well. If your phone gets hot from high power use (and not the sun or high room temperature), it is an indication that you are punishing the battery.

Sometimes taking it easy on batteries is not always possible because some products, such as lithium-ion powered tools, are hard on the battery by design (drills, lawnmower, snowblowers, etc.). In these cases, manufacturers will typically use batteries designed for high drain rates (but have lower capacity), but anything you can do to be gentle on even these batteries will pay dividends in longer life. For power banks, try to use the power at a moderate rate. USB models can be tricky to limit your current draw rate as a phone or tablet will draw what it wants up to the bank limit, but for non-USB items you can often try to limit how quickly it’s drawing power.

Also you can “hack” this issue by buying and using a larger capacity battery if your device can handle it. For the same power draw, a larger capacity battery will have a lower percent drain per hour. This also reduces cycle count.

For items you don’t use daily, check on your batteries from time to time in case they are draining themselves when not in use. For EVs and cellphones, this is not a noticeable problem, but for power tools and power banks it is a good idea to check on the battery every few months (or weeks if it drains itself quickly) and top it up to 50%-ish for storage.

Depth Of Charge

Unlike most other battery types (especially lead acid), lithium-ion batteries do not like being stored at high charge levels. Charging and then storing them above 80% hastens capacity loss. So charge the battery to 80% or a bit less if that will get you through the day/week. Most EVs have the ability to select a percentage to charge up to in the software.

Charging above 80% is not a big problem if you intend to draw it down quickly and need the full capacity. Of course, try not to do this regularly if you don’t have to. Avoid overnight charging of your phone unless it has a smart charging feature, such as some Apple phones. For Android phones, use Accubattery software or similar, which will beep at 80% charge as a reminder to unplug the cord. Charge to full in the morning if needed to get through the day.

Similarly, for your EV if you have a long driving day planned, setting the software to charge to full by morning (not storing the vehicle overnight at full) and driving until you are below 80% rather quickly will not cause much extra wear to your batteries.

In general, it’s the storage time above 75-80% that causes most of the extra high charge wear.

For storing batteries long term, charge them to about 50% and check on them every now and then.

Depth Of Discharge

According to many sources, lithium-ion doesn’t like being fully discharged. So try to avoid draining your batteries below about 25% when possible. If unavoidable, then charge it back up to above 25% as soon as possible so the time spent near empty is minimized.

Miscellaneous Battery Information

  • Lithium-ion batteries have no memory effect. This was a facet of Nickel Cadmium batteries that went out of style decades ago, yet this is a surprisingly common question people ask about any rechargeable battery.
  • Most name-brand devices use quality name-brand batteries, but some devices (such as cheap power banks or no-name products) use off-brand or grey market batteries that will not last for years no matter how much you baby them. Try to avoid buying products with these batteries because the money you save buying them translates into reduced product life.
  • For some devices, the charge gauge can fall out of calibration and give you incorrect readings. This can typically be fixed by either fully charging or fully discharging then recharging the battery back to full. However this is hard on the battery, so it’s not something you want to do regularly, but in the rare instance that this is the cause of your issues, then a full charge or charge-discharge cycle will solve it. Quickly draw the battery back down to 80% before putting it back in service.
  • Everything stated above is quite generalized, and with the various battery chemistries on the market, all of them have slightly different characteristics. Once facet may be stronger in one chemistry vs. another but in general the advice provided is applicable to all lithium battery chemistries.

End Of Life (EOL)

End of life for a lithium-ion battery typically occurs when the battery can no longer perform the function the user requires of it. Commercially, when a battery (pack) has reached 80% of its design capacity it is considered EOL, but for end users, it’s typically looked at as when the device (or battery pack) becomes unusable.

When your battery starts acting funny, it can mean it’s ready to be retired. Some Apple phones have the ability to calculate capacity remaining (it is buried in the settings) and Accubattery for Android can do the same thing if installed and used for at least a week.

These are some of the strange quirks you may run into that can occur with worn out lithium-ion batteries:

  • Device shuts down stating low battery even though it should have plenty of runtime left, even if it stated a decent percent charge remaining just minutes before
  • The battery percentage meter drops randomly
  • Charging finishes prematurely even though the battery did not accept much power
  • Sudden capacity drops without warning
  • Self-discharge rate soars and is often uneven
  • The battery (pack) gets very hot during charging (sometimes the charger shuts down due to this)
  • Pouch batteries can start bulging (seen on some cell phones)

Be sure to recycle all batteries at the end of their life as they contain valuable materials that can be recycled into new batteries.


A summary of the terminology used in the battery world:

Charging algorithm = Battery is charged at Constant Current, then near full charge (typically over 80%) the charger switches to Constant Voltage. The charging rate slows until the battery reaches 100% charge. Many EVs modify this algorithm.

C = Capacity of the battery

  • Battery ability to output power is measured in 1/C. 1C means the battery drained in one hour, 2C means 30 minutes (1/2 hour), 3C means empty in 20 minutes (1/3 of an hour) and so forth.
  • Charging can also be measured in C, 1C means charged in 1 hour, 0.5C charged in 2 hours, 2C charged in 30 minutes and so forth.
    Charge rates are not typically linear, the battery is typically charged more rapidly until it reaches the Constant Voltage stage.

Series = Multiple batteries linked in a chain to increase the total voltage of the pack.

Parallel = Multiple batteries linked side by side to increase amperage instead of voltage.

(x)S(x)P configuration = explains how multiple batteries are linked. 4S2P for example means 8 cells, four in Series and two Parallel rows

Volts (V) = Electric potential. Power outlets are measured in volts.

Amps (A)= Number of Coulombs of electrons carrying those volts.

Watts (W)= Volts x Amps. Energy/Power usage is often measured in watts. A kilowatt is 1000 watts. kWh is Kilowatts per hour.

Energy is measured in Joules and is convertible to Watts/second if you have a time component.

Power = Energy over Time. Typically measured in Watts. One Joule per second is 1 watt. The same number of Joules or Watts in half the time is twice the power.

Nominal voltage = Voltage used to calculate Watts of a battery.

Battery capacity = How many Ah of power the battery can output (when new).

Load = Device that uses the power from the battery.

Internal resistance of a battery affects its Power output. Increased internal resistance is the reduction in rate of Power output the battery can deliver. Energy output is affected somewhat by increased internal resistance.



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

It floats, it flies, it works: World’s first hydrofoil electric ferry is crushing it

Published

on

By

It floats, it flies, it works: World's first hydrofoil electric ferry is crushing it

It flies, it floats, it’s electric — and now it’s officially a hit. The world’s first electric hydrofoil ferry, a Candela P-12 vessel named Nova, has wrapped up its first season of public service in Stockholm, and new data confirms what many suspected: this sleek, silent, water-skimming machine isn’t just a cool piece of tech — it’s also wildly successful.

The Nova, which first entered Stockholm’s public transport system last fall, uses a combination of electric propulsion and hydrofoil technology to quite literally lift above the water. This reduces drag, increases efficiency, and makes it the fastest electric passenger vessel in the world, cruising comfortably at 25 knots (around 29 mph or 46 km/h).

As it prepares to return to the water on April 15 after a winter pause, Stockholm’s public transport authority has released performance data from Nova’s autumn run. The numbers reveal that the boat isn’t just fast — it’s popular, green, and pulling people out of their cars.

Compared to the diesel ferries it operates alongside, Nova emits 95% less CO₂ and uses 84% less energy per passenger-kilometer. That translates to just 23 grams of CO₂ per passenger-kilometer, compared to 439 grams for the older diesel vessels. In other words, it’s a drop in a bucket compared to the old standard.

Advertisement – scroll for more content

It’s not just an environmental win — it’s a rider favorite too. With 80% average occupancy (and many trips fully booked), Nova has become quite literally one of the hottest tickets on Stockholm’s Route 89. Some of that success may come from its 30-minute travel time between Tappström and Stockholm City Hall — roughly half the time it takes to get there by car or bus.

The numbers are clear with the data revealing that Nova attracts more people to travel on water, with a 30% increase in ridership on route 89. According to Candela CEO Gustav Hasselskog, this shows that high-speed, comfortable waterborne transit can actually convert car commuters into ferry riders — a holy grail for sustainable city planning.

In response to the strong demand, Region Stockholm will expand Nova’s service from five to six days a week this spring, and to daily operations by May. In August, the pilot program will be evaluated — and Candela is already eyeing more routes across Stockholm’s vast archipelago.

The P-12’s combination of speed, silence, and ultra-low operating costs makes it ideal for routes with moderate passenger volume — a gap that many traditional ferries struggle to serve efficiently.

Candela isn’t stopping in Sweden, either. The company already has customers lined up in Saudi Arabia, New Zealand, and the U.S., suggesting that this may be just the beginning of the era of flying electric ferries.

“We are incredibly happy that Region Stockholm has enabled us to demonstrate the hydrofoil technology in the city’s public transport. We see that waterways in most cities have enormous potential for fast, low-cost, and emission-free transport that can relieve road networks and increase accessibility,” said Hasselskog. “This is just the beginning.”

candela
Candela C-8 electric speedboat sails alongside a Candela P-12 electric ferry

Electrek’s Take

I’ve followed Candela with such interest over the years not just because of their fun electric speedboats (though I love those too, as you can tell from my first ride video below), but also because of the company’s ability to help take more cars off the road and switch commuters to ferry riders.

As someone who lives a largely car-free lifestyle, that’s huge for me. When we talk about reforming urban transportation, such lofty goals require a holistic approach and we should include a diverse field of options that can work together to achieve those intentions. Flying electric boats might not be most people’s first thought, but they achieve the same goal as many other alternatives, shifting commuters to more sustainable alternatives to cars.

We’ve already seen how capable electric hydrofoil ferries like these are, even watching the Candela P-12 tackle large swells in open seas. So short commutes like these that allow rapid recharging via DC Fast Charging at each stop make so much sense for such a capable machine.

Even when compared to traditional electric ferries, which are already an improvement by reducing emissions, electric hydrofoil ferries like these go so much further. They not only use even less energy than a traditional electric ferry, but they offer a faster trip and a smoother ride, making the idea of ferry travel that much more enticing. In this case seen in Stockholm, commuters get to arrive faster, more comfortably, and in a pretty cool way. That’s a win-win-win if you ask me!

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

World surges past 40% clean power in record renewables boom

Published

on

By

World surges past 40% clean power in record renewables boom

Renewables and nuclear provided 40.9% of the world’s power generation in 2024, passing the 40% mark for the first time since the 1940s, according to a new global energy think tank Ember report. 

Renewables added a record 858 TWh in 2024, 49% more than the previous high in 2022. Solar was the largest contributor for the third year running, adding 474 TWh to reach a share of 6.9%. Solar was the fastest-growing power source (+29%) for the 20th year in a row. 

Solar has doubled in just three years, providing more than 2,000 TWh of electricity in 2024. Wind generation also grew to 8.1% of global electricity, while hydro – the single largest renewable source – remained steady at 14% of global electricity.

“Solar power has become the engine of the global energy transition,” said Phil MacDonald, Ember’s managing director. “Paired with battery storage, solar is set to be an unstoppable force. As the fastest-growing and largest source of new electricity, it is critical in meeting the world’s ever-increasing demand for electricity.”

Advertisement – scroll for more content

Ember’s sixth annual Global Electricity Review, published today, provides the first comprehensive overview of the global power system in 2024 based on country-level data. It’s published alongside the world’s first open dataset on electricity generation in 2024, covering 88 countries that account for 93% of global electricity demand, as well as historical data for 215 countries.

What drove the rising power demand

The analysis finds that fossil fuels also saw a small 1.4% increase in 2024 due to surging electricity demand, pushing global power sector emissions up 1.6% to an all-time high.

Heatwaves were the main driver of the rise in fossil generation, accounting for almost a fifth (+0.7%) of the increase in global electricity demand in 2024 (+4.0%), mainly through additional use of cooling. Without these temperature effects, fossil fuel generation would have risen by only 0.2%, as clean electricity generation met 96% of the demand growth not caused by hotter temperatures.

“Amid the noise, it’s essential to focus on the real signal,” continued MacDonald. “Hotter weather drove the fossil generation increase in 2024, but we’re very unlikely to see a similar jump in 2025.”

Aside from weather effects, the increasing use of electricity for AI, data centers, EVs, and heat pumps is already contributing to global demand growth. Combined, the growing use of these technologies accounted for a 0.7% increase in global electricity demand in 2024, double what they contributed five years ago. 

Clean power will grow faster than demand

Ember’s report shows that clean generation growth is set to outpace faster-rising demand in the coming years, marking the start of a permanent decline in fossil fuel generation. The current expected growth in clean generation would be sufficient to meet a demand increase of 4.1% per year to 2030, which is above expectations for demand growth. 

“The world is watching how technologies like AI and EVs will drive electricity demand,” said MacDonald. “It’s clear that booming solar and wind are comfortably set to deliver, and those expecting fossil fuel generation to keep rising will be disappointed.”

Beyond emerging technologies, the growth trajectories of the world’s largest emerging economies will play a crucial role in defining the global outlook. More than half of the increase in solar generation in 2024 was in China, with its clean generation growth meeting 81% of its demand increase in 2024. India’s solar capacity additions in 2024 doubled compared to 2023. These two countries are at the forefront of the drive to clean power and will help tip the balance toward a decline in fossil generation at a global level.

Professor Xunpeng Shi, president of the International Society for Energy Transition Studies (ISETS), said: “The future of the global power system is being shaped in Asia, with China and India at the heart of the energy transition. Their increasing reliance on renewables to power demand growth marks a shift that will redefine the global power sector and accelerate the decline of fossil fuels.”

Read more: Made-in-America solar just got a big win in Louisiana


If you live in an area that has frequent natural disaster events, and are interested in making your home more resilient to power outages, consider going solar and adding a battery storage system. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and share your phone number with them.

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. –trusted affiliate link*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Nissan’s new LEAF EV was caught at a Tesla Supercharger in Canada

Published

on

By

Nissan's new LEAF EV was caught at a Tesla Supercharger in Canada

The next-gen LEAF is almost here, and it’s looking better than ever. This isn’t the electric hatch you are used to seeing. Nissan’s new LEAF EV has more range, a fresh crossover design, and yes, it can finally charge up at Tesla Superchargers with an NACS port. With the official reveal just around the corner, someone already spotted the new LEAF at a Tesla charger in Canada.

Nissan is launching the new LEAF in the US and Canada

A little over a week ago, we finally got our first look at the third-generation LEAF. Nissan’s iconic electric hatch has grown into a “sleek and spacious family-friendly crossover.”

The US and Canada will be the first to see the reimagined LEAF later this year. It will join the Ariya in Nissan’s North American EV lineup as it looks to spark growth in one of its most important markets.

Based on the CMF-EV platform, the same one underpinning the Ariya, Nissan promises the new LEAF will have “significant range improvements.” Although no other details were revealed, Nissan’s vehicle programs chief, Francois Bailly, told TopGear.com that it’s expected to have WLTP driving range of up to 373 miles (600 km).

Advertisement – scroll for more content

It will likely be lower on the EPA scale, but anything even close to 300 miles would be a major improvement over the current 212 EPA-estimated miles offered on the 2025 LEAF SV Plus.

Nissan-new-LEAF-EV
Nissan’s new LEAF EV (Source: Nissan)

The next-gen LEAF will also be Nissan’s first EV to feature an integrated NACS charging port. With its official debut later this year, the new model is out for testing and was just caught testing at a Tesla Supercharger in Canada.

Nissan’s next-gen LEAF charging at a Tesla Supercharger in Canada ahead of its debut (Source: KindelAuto)

If you didn’t know what vehicle it is, the LEAF is hardly recognizable. The new image from KindelAuto gives us a closer look at the new crossover design. It almost looks like a Tesla sitting in front of the charger.

The new LEAF is one of 10 new and refreshed Nissan vehicles set to launch in the US and Canada. It will arrive later this year, followed by the fourth-gen Rogue in 2026, which will be available as a PHEV for the first time.

Nissan-new-LEAF-EV
Nissan’s upcoming lineup for the US, including the new LEAF EV and “Adventure Focused” SUV (Source: Nissan)

Nissan also plans to build a new “adventure-focused SUV” at its Canton, Mississippi, plant in late 2027. The teaser shows what appears to be a rugged electric Xterra. We’ll have to wait for more details on that one.

Nissan will reveal additional info about the upcoming LEAF mid-year. Check back soon for more updates.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending