Connect with us

Published

on

As hydrogen hype is ramping up again, this time very clearly due to the fossil fuel industry putting its very large, well-funded thumb on the scales of public perception and policy-making, a pair of academic papers on the climate merits of “blue” hydrogen have been published recently. The first was by Howarth and Jacobson, and found that “blue” hydrogen had full lifecycle emissions that made it a non-starter as a climate solution. The second, by a host of authors — 16 of them, which is an unusually large number for an academic paper in this field, and more in keeping with a pile-on letter with signatories — finds that “blue” hydrogen can be a good low-carbon addition to the solution set.

The Howarth, Jacobson, et al paper will be assessed in a separate article, but this pair of pieces will assess the merits of the hyper-authored paper favoring “blue” hydrogen, On the climate impacts of blue hydrogen production, in the journal ChemRxiv. Note that this journal is in the same vein as other journals appearing at present, in that it publishes non-peer reviewed material, a very acceptable practice for important fields with long peer-review cycles but one that comes with a proviso.

“These are preliminary reports which have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health related behaviour, or be reported in news media as established information.”

As such, this article is an assessment of something that is very early in the review cycle, and some comments may become stale as the paper moves through to final publication. As a non-peer reviewed early publication journal, it doesn’t have an impact factor. By comparison, the Howarth Jacobson paper is peer-reviewed and published in Wiley’s open access journal Energy Science & Engineering, which has an impact factor of 4.07. This is not in any way dismiss the paper, but to acknowledge that it is somewhat less reliable by this measure at this time. I refer to papers in similar early publication journals regularly, most notably Cornell’s arXiv on machine learning, where peer review cycles can take two years.

The paper appears to have been in the works for a while with a subset of the authors, then the Howarth and Jacobson paper was published, and this paper was rushed to early publication in reaction, presumably with the addition of authors who wanted to make their disagreement with Jacobson known as well. This is reminiscent of the 20 author critique of Jacobson et al’s 2015 published study on 100% renewables by 2050 for the USA, a critique I found without particular merit, but in this case the publication is parallel to Jacobson’s, not directly critiquing it. My observation at the time was that everyone was agreeing that up to 80% was fully achievable with renewables, but that the last 20% would be too hard or expensive. My further observation is that last 20% is now often the last 10% according to many. I suspect Jacobson will be proven right, and further that his vision is by far the fastest and cheapest one to get electricity decarbonized by 80% t0 90%, so if other technologies prove necessary for the last bit, they can wait.

That the authors are reacting to the Howarth-Jacobson paper is clear from the abstract by the way, where they say “However, recent research raises questions about the effective climate impacts of blue hydrogen from a life cycle perspective.” This is not to denigrate the authors. Like the authors of the previous critique, they have a different belief about what will be necessary to decarbonize the world, and so this is, in my opinion, something of a tempest in a teapot. Except that it isn’t. The credibility of “blue” hydrogen is essential for the fossil fuel industry to maintain its current level of policy and opinion pressure for adoption of fossil-fuel sourced hydrogen in a much larger way than any current use of the molecule.

And so, to the contents of the paper. The approach to this will be to quote key elements from the paper and respond to them.

“Hydrogen is foreseen to be an important energy vector in (and after) the transition to net-zero Greenhouse Gas (GHG) emission economies.”

This is an overstatement at best. Hydrogen as an energy vector is being promoted heavily by the fossil fuel industry, but fails multiple tests associated with economics, efficiency and effectiveness after decades of attempts. Hydrogen will be required as a chemical feedstock in industry, but is unlikely to be widely used in transportation, storage or heating. There are much better alternatives for the vast majority of use cases.

Hydrogen demand projection through 2100 by author

For those who missed it, I recently published a three part series with a contrarian but I think more accurate perspective on the future of hydrogen demand, one which saw global hydrogen demand falling, not rising. This is version 1.0 and intended to provide the basis for a fuller discussion. And to be clear, it’s a singular non-academic analyst’s perspective and in no way peer reviewed or intended to be peer reviewed, much like Liebreich’s excellent and useful hydrogen ladder. There are large error bars and it’s an opinion, not a prediction. But it is an opinion based on what is necessary across multiple domains for us to actually take action on climate, the laws of thermodynamics and basic economics. My perspective that hydrogen demand will be falling is a large part of the reason I don’t think that “blue” hydrogen is even necessary. Perpetuating and expensively remediating the significant negative externalities of the fossil fuel industry isn’t required to nearly the degree that the fossil fuel industry is trying to convince people it is.

If an updated version of the paper is produced that the authors might make this a more accurate statement, but note that it is not the direct point of the paper. It is, however, indicative of their assumptions, something which becomes clearer and clearer through the paper.

“The reductions in carbon dioxide equivalent (CO2-eq.) emissions per unit of hydrogen production were in the order of 50-85% when compared to standard NG-based hydrogen production without CCS”

There are two concerns with it. The first is that the goal cannot be 50% or even 85%. The goal is 100%. In connection with the expectation of a very large role for hydrogen in energy, 50–85% simply perpetuates the damage of climate change.

Later in the paper, the authors find that in the best cases with high monitoring and maintenance, it can exceed 90%. Further, they say that technologies that are in prototype today but not scaled could achieve 100%. It’s important to recognize that the authors make it clear that only in the best case scenarios with the absolute best practices and technology that is currently unproven will “blue” hydrogen be compatible with climate change requirements.

Magnitude of challenge vs tiny scale of CO2 use today

Magnitude of challenge vs tiny scale of CO2 use today by author

The second concerns CCS. Having reviewed all major CCS implementations and most proposed technologies, publishing regularly on the subject for several years, there is no way that CCS can or will scale to the magnitude of the emissions. At present, the total global CCUS market is 230 million tons of CO2 annually. 90 million tons of that is for enhanced oil recovery, and as the CO2 being ‘sequestered’ is first pumped from underground where it was already sequestered, is strongly negative for climate change. Meanwhile, the current scale of annual emissions is in the 40 billion tons range, and the total excess atmospheric CO2 is over a thousand billion tons. In order to stabilize the climate, we have to get to net zero and start drawing down the thousand billion tons.


This concludes the first half of the assessment of the “blue” hydrogen life-cycle assessment. As a reminder, this is non-peer reviewed draft apparently rushed to publication, and so comments in this article may not reflect the final published version of the paper. That said, given the assumptions and provenance, it’s unlikely to be substantially altered unless other reviewers find substantive errors in the modeling. I don’t dispute the LCA work that the authors have done, but am merely pointing out that their arguments about “blue” hydrogen’s value have little merit in the actual world we inhabit.

 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

 

 


Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

$250M Series B raise boosts XPeng AeroHT flying car ambitions

Published

on

By

0M Series B raise boosts XPeng AeroHT flying car ambitions

Chinese carmaker XPeng is getting perilously close to bringing its AeroHT consumer eVTOL concept to market, thanks to a $250 million Series B round that’s set to accelerate the company’s modular “flying car” production plans.

XPeng subsidiary AeroHT had its first successful proof of concept test flight ahead of the brand’s annual 1024 back in 2023, where the company unveiled a pair of flying car designs. The X3 is an actual flying “car” that can drive, park, and take off on its own, and a second, modular eVTOL that folds up into the back of an electric van called the Land Aircraft Carrier.

That vehicle pair, shown at CES in January, was set to begin production this year, with the eVTOL component set to begin production in 2026 – and that’s looking a lot more likely thanks to the new infusion of capital!

AeroHT at CES 2025


Xpeng Aeroht raised $150 million in Series B1 funding last August, before launching its Series B2 funding round. The most recent announcement that the company has secured an additional $100 million in its Series B2 funding round brings the total amount raised to more than $750 million, with a $1B pre-revenue valuation.

Advertisement – scroll for more content

CNEVPost reports that company aims to establish itself as a commercial pioneer in urban air mobility ahead of a potential IPO – and may get there sooner than later, thanks to several hundred pre-orders at the $280,000 projected price.

Electrek’s Take


flying car Dubai
AeroHT sixth-generation X3 flying car; via XPeng.

Scooter Doll said it best, writing, “this footage (of the AeroHT test flight) is as scary and concerning as it is exciting and awe-inspiring.” Which is to say that these things are real, they seem like they’re getting built, and they seem like they’ll sell well enough to convince at least one or two remaining boomers that the flying car they’ve been promised their whole lives is – finally! – coming to market.

Here’s hoping.

SOURCE: Xpeng, via CNEVPost; gallery photos by the author.


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

This metro Atlanta factory roof is now a solar record-breaker

Published

on

By

This metro Atlanta factory roof is now a solar record-breaker

Flooring manufacturer Beauflor USA just turned on the biggest rooftop solar system by capacity in metro Atlanta — and it’s now powering part of its Georgia factory.

The new 1,040 kW system in Cartersville officially beats metro Atlanta’s previous rooftop solar record of 1,034 kW. The new array produces enough energy to power more than 100 homes. The system is expected to cover about 10% of Beauflor’s electricity needs and cut its carbon emissions by about 920 metric tons annually.

“This solar installation represents our commitment to sustainable manufacturing practices while making sound business decisions,” said Emile Coopman, continuous improvement manager at Beauflor. He added that the system is designed with room to grow: “This is the first step toward more renewable energy.”

The company partnered with Cherry Street Energy to install the nearly 2,000-panel system, which was completed in less than four months. Cherry Street invested $1.8 million into the project and is covering all construction and maintenance costs through a 30-year energy procurement agreement. Beauflor will buy solar power directly from Cherry Street, allowing it to avoid upfront capital costs while still lowering its energy bills.

Advertisement – scroll for more content

“As Georgia’s manufacturers ramp up production amid rising costs for grid energy, sophisticated operators seek ways to quickly and sustainably address their energy needs,” said Cherry Street CEO Michael Chanin. “On-site solar with no capital expense delivers just that: reliable, affordable electricity.”

Chanin added that the system’s power output is especially impressive: “The previous record-holder for metro Atlanta’s largest rooftop solar required over 4,000 panels. We’re using less than 2,000 to reliably generate even more power.”

Read more: This is New Jersey’s largest high-rise residential rooftop solar array


The 30% federal solar tax credit is ending this year. If you’ve ever considered going solar, now’s the time to act. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Block shares soar 10% on entry into S&P 500

Published

on

By

Block shares soar 10% on entry into S&P 500

Jack Dorsey, co-founder and chief executive officer of Twitter Inc. and Square Inc., listens during the Bitcoin 2021 conference in Miami, Florida, on Friday, June 4, 2021.

Eva Marie Uzcategui | Bloomberg | Getty Images

Block shares jumped more than 10% in extended trading on Friday, as the fintech company gets set to join the S&P 500, replacing Hess.

It’s the second change to the benchmark this week, after S&P Global announced on Monday that ad-tech firm The Trade Desk would be added to the S&P 500. Trade Desk is taking the place of software maker Ansys, which was acquired by Synopsys in a deal that closed Thursday.

Hess’ departure comes just after Chevron completed its $54 billion purchase of the oil producer, prevailing against Exxon Mobil in a legal dispute over offshore oil assets in the South American nation of Guyana.

Block will officially join the S&P 500 before the opening of trading on July 23, according to a statement from S&P. Stocks often rally when they’re added to a major index, as fund managers need to rebalance their portfolios to reflect the changes.

Most alterations to the S&P 500 take place during the index’s quarterly rebalancing. However, in the case of the closing of an acquisition, a company can be removed from the index and replaced off schedule. Last week monitoring software company Datadog took Juniper Networks’ place in the S&P 500 as part of the index’s quarterly change. 

Block’s addition brings further tech heft to an index that’s been steadily moving in that direction in recent years, reflecting the market cap gains of companies across the sector. Block, which gained popularity as Square due to the rapid growth of the company’s payment terminals, has expanded into crypto, lending and other financial services.

Founded by Jack Dorsey in 2009, Square changed its name to Block in 2021 to emphasize its focus on blockchain technologies.

Block shares are down 14% this year, underperforming the broader U.S. market. The Nasdaq is up more than 8%, while the S&P 500 has gained 7%. Still, with a market cap of about $45 billion, Block is valued well above the median company in the index.

In May, Block reported first-quarter results that missed Wall Street expectations on Thursday and issued a disappointing outlook, leading to a plunge in the stock price. Block’s forecast for the second quarter and full year reflected challenging economic conditions that followed sweeping tariff announcements by President Donald Trump.

“We recognize we are operating in a more dynamic macro environment, so we have reflected a more cautious stance on the macro outlook into our guidance for the rest of the year,” the company wrote in its quarterly report.

The company is scheduled to report second-quarter results after the close of regular trading on Aug. 7.

WATCH: The rise of Bluesky

The rise of Bluesky

Continue Reading

Trending