Connect with us

Published

on

As hydrogen hype is ramping up again, this time very clearly due to the fossil fuel industry putting its very large, well-funded thumb on the scales of public perception and policy-making, a pair of academic papers on the climate merits of “blue” hydrogen have been published recently. The first was by Howarth and Jacobson, and found that “blue” hydrogen had full lifecycle emissions that made it a non-starter as a climate solution. The second, by a host of authors — 16 of them, which is an unusually large number for an academic paper in this field, and more in keeping with a pile-on letter with signatories — finds that “blue” hydrogen can be a good low-carbon addition to the solution set.

The Howarth, Jacobson, et al paper will be assessed in a separate article, but this pair of pieces will assess the merits of the hyper-authored paper favoring “blue” hydrogen, On the climate impacts of blue hydrogen production, in the journal ChemRxiv. Note that this journal is in the same vein as other journals appearing at present, in that it publishes non-peer reviewed material, a very acceptable practice for important fields with long peer-review cycles but one that comes with a proviso.

“These are preliminary reports which have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health related behaviour, or be reported in news media as established information.”

As such, this article is an assessment of something that is very early in the review cycle, and some comments may become stale as the paper moves through to final publication. As a non-peer reviewed early publication journal, it doesn’t have an impact factor. By comparison, the Howarth Jacobson paper is peer-reviewed and published in Wiley’s open access journal Energy Science & Engineering, which has an impact factor of 4.07. This is not in any way dismiss the paper, but to acknowledge that it is somewhat less reliable by this measure at this time. I refer to papers in similar early publication journals regularly, most notably Cornell’s arXiv on machine learning, where peer review cycles can take two years.

The paper appears to have been in the works for a while with a subset of the authors, then the Howarth and Jacobson paper was published, and this paper was rushed to early publication in reaction, presumably with the addition of authors who wanted to make their disagreement with Jacobson known as well. This is reminiscent of the 20 author critique of Jacobson et al’s 2015 published study on 100% renewables by 2050 for the USA, a critique I found without particular merit, but in this case the publication is parallel to Jacobson’s, not directly critiquing it. My observation at the time was that everyone was agreeing that up to 80% was fully achievable with renewables, but that the last 20% would be too hard or expensive. My further observation is that last 20% is now often the last 10% according to many. I suspect Jacobson will be proven right, and further that his vision is by far the fastest and cheapest one to get electricity decarbonized by 80% t0 90%, so if other technologies prove necessary for the last bit, they can wait.

That the authors are reacting to the Howarth-Jacobson paper is clear from the abstract by the way, where they say “However, recent research raises questions about the effective climate impacts of blue hydrogen from a life cycle perspective.” This is not to denigrate the authors. Like the authors of the previous critique, they have a different belief about what will be necessary to decarbonize the world, and so this is, in my opinion, something of a tempest in a teapot. Except that it isn’t. The credibility of “blue” hydrogen is essential for the fossil fuel industry to maintain its current level of policy and opinion pressure for adoption of fossil-fuel sourced hydrogen in a much larger way than any current use of the molecule.

And so, to the contents of the paper. The approach to this will be to quote key elements from the paper and respond to them.

“Hydrogen is foreseen to be an important energy vector in (and after) the transition to net-zero Greenhouse Gas (GHG) emission economies.”

This is an overstatement at best. Hydrogen as an energy vector is being promoted heavily by the fossil fuel industry, but fails multiple tests associated with economics, efficiency and effectiveness after decades of attempts. Hydrogen will be required as a chemical feedstock in industry, but is unlikely to be widely used in transportation, storage or heating. There are much better alternatives for the vast majority of use cases.

Hydrogen demand projection through 2100 by author

For those who missed it, I recently published a three part series with a contrarian but I think more accurate perspective on the future of hydrogen demand, one which saw global hydrogen demand falling, not rising. This is version 1.0 and intended to provide the basis for a fuller discussion. And to be clear, it’s a singular non-academic analyst’s perspective and in no way peer reviewed or intended to be peer reviewed, much like Liebreich’s excellent and useful hydrogen ladder. There are large error bars and it’s an opinion, not a prediction. But it is an opinion based on what is necessary across multiple domains for us to actually take action on climate, the laws of thermodynamics and basic economics. My perspective that hydrogen demand will be falling is a large part of the reason I don’t think that “blue” hydrogen is even necessary. Perpetuating and expensively remediating the significant negative externalities of the fossil fuel industry isn’t required to nearly the degree that the fossil fuel industry is trying to convince people it is.

If an updated version of the paper is produced that the authors might make this a more accurate statement, but note that it is not the direct point of the paper. It is, however, indicative of their assumptions, something which becomes clearer and clearer through the paper.

“The reductions in carbon dioxide equivalent (CO2-eq.) emissions per unit of hydrogen production were in the order of 50-85% when compared to standard NG-based hydrogen production without CCS”

There are two concerns with it. The first is that the goal cannot be 50% or even 85%. The goal is 100%. In connection with the expectation of a very large role for hydrogen in energy, 50–85% simply perpetuates the damage of climate change.

Later in the paper, the authors find that in the best cases with high monitoring and maintenance, it can exceed 90%. Further, they say that technologies that are in prototype today but not scaled could achieve 100%. It’s important to recognize that the authors make it clear that only in the best case scenarios with the absolute best practices and technology that is currently unproven will “blue” hydrogen be compatible with climate change requirements.

Magnitude of challenge vs tiny scale of CO2 use today

Magnitude of challenge vs tiny scale of CO2 use today by author

The second concerns CCS. Having reviewed all major CCS implementations and most proposed technologies, publishing regularly on the subject for several years, there is no way that CCS can or will scale to the magnitude of the emissions. At present, the total global CCUS market is 230 million tons of CO2 annually. 90 million tons of that is for enhanced oil recovery, and as the CO2 being ‘sequestered’ is first pumped from underground where it was already sequestered, is strongly negative for climate change. Meanwhile, the current scale of annual emissions is in the 40 billion tons range, and the total excess atmospheric CO2 is over a thousand billion tons. In order to stabilize the climate, we have to get to net zero and start drawing down the thousand billion tons.


This concludes the first half of the assessment of the “blue” hydrogen life-cycle assessment. As a reminder, this is non-peer reviewed draft apparently rushed to publication, and so comments in this article may not reflect the final published version of the paper. That said, given the assumptions and provenance, it’s unlikely to be substantially altered unless other reviewers find substantive errors in the modeling. I don’t dispute the LCA work that the authors have done, but am merely pointing out that their arguments about “blue” hydrogen’s value have little merit in the actual world we inhabit.

 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

 

 


Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

MINI x Deus Ex Machina Skeg electric concept lightens the mood

Published

on

By

MINI x Deus Ex Machina Skeg electric concept lightens the mood

MINI has partnered with lifestyle brand, Deus Ex Machina, to develop this. It’s called the Skeg, and it’s a high-performance, racing-inspired electric concept car that’s sure to lighten the mood – by shedding fully 15% of its mass in the quest for speed.

One of a pair of exclusive, one-off concepts based on MINI’s John Cooper Works cars. The Deus Ex Machina Skeg celebrates MINI’s storied racing history with what the company calls, “a clean, minimal, and quiet rebellion,” that draws on materials, technologies, and philosophies from the world of surfing.

The electric MINI JCW Skeg is stripped to its essentials, with much of the steel and aluminum bits replaced with lightweight fiberglass to maximize acceleration while driving the minimalist aesthetic home. The end result weighs 15% less than the standard car – but makes the same stout 190 kW (258 hp) as the production car.

Surf’s up


MINI Skeg concept interior; via BMW.

The interior is stripped back to the barest essentials, reflecting BMW’s vision of a surf culture that prioritizes function over form. MINI claims the end result resembles a mobile surf shop, with fiberglass trays for wetsuits, specially shaped bins, neoprene seats, and other touches that “bring the surf culture into the interior.”

Advertisement – scroll for more content

For their part, the BMW and MINI styling team seems pretty proud of its minimalistic electric endeavor. “In this extraordinary collaboration … every single detail has been crafted with artisanal precision and expertise,” says Holger Hampf, Head of MINI Design. “This has resulted in unique characters that are clearly perceived as belonging together through their distinctive design language and use of graphics.”

The concept retains the production version’s 54.2 kWh li-ion battery pack, up to 250 of WLTP range with the production aero kit, sprints from 0-100 km (62 mph) in just 5.9 seconds. With 15% less mass, though, that should jump to more than 255 miles, with 0-60 times dropping below 5.5 seconds.

I dig it – but I’d skip the surf bits and just appreciate the raw composite, minimalist interior look for what it is. Take a look at the image gallery, below, then let us know what you think of MINI’s Skeg concept in the comments.


SOURCE | IMAGES: BMW MINI.


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Volvo Penta teams up with e-power to equip Boels with next-gen Battery Energy Storage Systems (BESS)

Published

on

By

Volvo Penta teams up with e-power to equip Boels with next-gen Battery Energy Storage Systems (BESS)

Veteran marine and industrial power solutions company Volvo Penta has joined forces with energy solutions provider e-power to build battery energy storage systems (BESS). Volvo Penta’s battery systems for energy storage will power BESS units built by e-power that can be catered to a range of applications, most notably construction rental clients like Boels Rentals in Europe.

Volvo Penta is a provider of sustainable power solutions that currently serves land and sea applications under the Volvo Group umbrella. As more and more of the world goes all-electric, the global manufacturer has also adapted, sharing cultural values with Volvo Group to engineer new and innovative sustainable power solutions.

Nearly 100 years later, Volvo Penta remains an industry leader in marine propulsion systems and industrial engines. As more and more of the world goes all-electric, the Swedish manufacturer has also adapted, sharing cultural values with Volvo Group to engineer new and innovative sustainable power solutions.

For example, all Volvo Penta diesel engines now run on hydro-treated vegetable oil (HVO), reducing well-to-wheel emissions by up to 90% across the marine and industrial power industries. On the zero-emissions side, Volvo Penta has expressed its dedication to fossil-free power solutions, including battery electric components to serve heavy-duty applications such as terminal tractors, forklifts, drill rigs, and feed mixers, to name a few.

Advertisement – scroll for more content

To leverage its battery electric value chain, Volvo Penta has also ventured into battery systems for energy storage (or BESS subsystems). These energy-dense, purpose-built BESS subsystems can provide portable, sustainable energy for all-electric charging and reduce grid dependency.

Volvo battery
Source: Volvo Penta

Volvo Penta to deploy battery systems for energy storage

Volvo Penta recently announced a strategic partnership with e-power, a Belgian power solutions provider. Together, Volvo Penta and e-power will develop a scalable Battery Energy Storage System (BESS) for Boels Rental.

The collaboration continues a long-standing partnership between all three companies. Boels – one of the largest construction rental companies is a long-time customer of e-power generators that utilize Volvo Penta engines. As the company shifts toward electrification and sustainability, it will again turn to those companies to deliver reliable performance.

Volvo Penta’s BESS subsystem comprises battery packs, a Battery Management System (BMS), DC/DC converters, and thermal management, combining to offer a compact, high-density, and transport-friendly solution optimized for rental operations. The company shared that this BESS design is integration-ready, enabling other OEMs like e-power to adapt and scale systems to customer-specific needs. Per e-power business support director, Jens Fets:

We’ve built our reputation on reliability and efficient power systems. Working again with Volvo Penta, this time on battery energy storage, allows us to meet the growing demand for energy in a silent, low-emissions, compact and mobile design—especially in rental applications.

The deployment of these new battery energy storage systems will help Boels cater to its customers’ growing demand for clean, silent, and mobile energy solutions in construction and other industrial applications. 

Aside from being more quickly adaptable to customer needs, Volvo Penta says its BESS architecture marks an overall shift in rental power systems. This is welcome news for all who support a cleaner, more sustainable future across all industries.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

2026 Mercedes-Benz GLC EV exterior leaks ahead of schedule

Published

on

By

2026 Mercedes-Benz GLC EV exterior leaks ahead of schedule

That didn’t take long! Just a few hours after Mercedes revealed the screen-heavy interior of its upcoming 2026 GLC EV, photos of the new crossover’s exterior – and that controversial grille! – leaked on Instagram and Reddit. We’ve got them here.

Two days ahead of the GLC EV’s officially schedule global debut, images that reportedly show the new 2026 Mercedes undisguised have leaked on Instagram and Reddit. They show the blocky new light-up grille on the nose of a very smooth, jellybean-like crossover shape that, despite Mercedes’ insistence that it’s moving away from the EQ series’ design language, looks an awful lot like an EQ Mercedes.

Check out the leaked images from kindleauto’s Instagram account, below, and see if you agree with that assessment.

If you need to see more before you feel comfortable commenting on the new SUV’s looks, there’s a few more angles over on the r/mercedes_benz subreddit.

Advertisement – scroll for more content

Leaked exterior pictures of the upcoming GLC EV
byu/Quick_Coyote_7649 inmercedes_benz

As with everything else on the internet, take those unofficial images with a grain of salt and maybe wait until the GLC EV’s official reveal in a few days’ time before casting your final vote on the new look – but there’s very little reason to believe the new Mercedes will look terribly different from what you see here.

Will the new grille and tech-forward interior with its massive, 39″ screen and MB.OS software be enough to turn the tide for Mercedes-Benz, enabling it to finally gain some traction in the electric crossover market? That remains to be seen, but the recently updated Tesla Model Y and crisply-styled new BMW iX3 with its 500 miles of range will make it an uphill battle, for sure.

We got a sneak peek at the new GLC back in July, when Mercedes-Benz Group CEO, Ola Källenius said that, “We’re not just introducing a new model – we’re electrifying our top seller.” Back then, we learned that the new GLC EV would have a wheelbase 3.1″ longer than the current ICE-powered model, as well as more head- and leg-room for its occupants and an extra 4.5 cubic feet (for 61.4 total) of cargo space.

Källenius also promised an innovative new 800V electric architecture and the latest battery tech, which will enable the electric GLC to add around 260 km (~160 miles) of WLTP range in just ten minutes thanks to more than 300 kW of charging capability.

SOURCES | IMAGES: kindleauto; Quick_Coyote_7649.


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending