The first part of this analysis on the recently released life-cycle assessment of “blue” hydrogen covered the provenance and background for the paper, as well as the significant and questionable assumptions that the authors make about both expected demand for “blue” hydrogen and the scalability of carbon capture and sequestration it would demand. This second half continues the analysis of assumptions and statements in the paper.
“In general, large-scale blue hydrogen production will be connected to the high-pressure natural gas transmission grid and therefore, methane emissions from final distribution to decentralized consumers (i.e., the low-pressure distribution network) should not be included in the quantification of climate impacts of blue hydrogen.”
The first problem with this is the assumption that massive centralized models of hydrogen generation will be preferable to the current highly distributed creation of hydrogen at the point of consumption. The challenges with distributing hydrogen are clear and obvious, so it’s interesting that they make an assumption that is completely contrary to what is occurring today, and wave away the significant additional challenges — including carbon debt — of creating a massive hydrogen distribution system essentially from scratch.
This also assumes that there will continue to be a distribution network for natural gas. Electrification of heat will continue apace, eliminating this market. But supposing that it does continue, this assumes that perpetuating the leakage problem is in line with actual climate mitigation, which is decidedly not the case. This is not the point of the paper, but is in line with the rest of the paper’s assumptions.
“… natural gas supply must be associated with low GHG emissions, which means that natural gas leaks and methane emissions along the entire supply chain, including extraction, storage, and transport, must be minimized.”
This is in context of what requirements “blue” hydrogen would have to meet in order to be low-carbon hydrogen per the paper.
I agree with this statement, but further say that there is zero reason to believe that this will be widely adhered to as the fossil fuel industry is already lagging substantially in maintenance with declining revenues in regions impacted by the Saudi Arabian-Russian price war, the history of the industry consists of a Ponzi-scheme of paying for remediation with far distant and non-existent revenues — witness the $200 billion in unfunded remediation in Alberta’s oil sands as merely the tip of the iceberg, and as long-distance piping and shipping of natural gas requires a great deal of expensive monitoring and maintenance to maintain that standard.
In other words, while the statement is true as far as it goes, it is so unlikely to be common as to be irrelevant to the actual needs of the world for hydrogen, something that the authors barely acknowledge.
“Our assessment is that CO2 capture technology is already sufficiently mature to allow removal rates at the hydrogen production plant of above 90%. Capture rates close to 100% are technically feasible, slightly decreasing energy efficiencies and increasing costs, but have yet to be demonstrated at scale.”
Once again, 90% is inadequate with over a thousand billion tons of excess CO2 already in the atmosphere. Second, carbon capture at source has been being done since the mid-19th century. It’s not getting magically better. The likelihood that approaching 100% capture rate technologies will be deployed by organizations and individuals who think 90% is good enough and are likely to be rewarded handsomely for achieving that level approaches zero. After all, Equinor has received what I estimate to be over a billion USD in tax breaks for its Sleipner facility, which simply pumps CO2 they extracted back underground, and ExxonMobil touts its Shute Creek facility as the best in the world when it pumps CO2 up in one place then back underground in another place for enhanced oil recovery, benefiting nothing except their bottom line.
Removal of carbon from the atmosphere to draw down CO2 levels toward achieving a stable climate will not be realized by “good enough,” and close to 100% will be so rarely realized globally that it’s not worth discussing.
“It is important to reiterate that no single hydrogen production technology (including electrolysis with renewables) is completely net-zero in terms of GHG emissions over its life cycle and will therefore need additional GHG removal from the atmosphere to comply with strict net-zero targets.”
The authors appear to think that the current CO2e emissions from purely renewable energy are going to persist. As mining, processing, distribution, manufacturing and construction processes decarbonize, the currently very low GHG emissions of renewables full lifecycle will fall. This is equivalent to the common argument against electric cars, that grid electricity isn’t pure. It’s also a remarkable oversight for a group of authors committed to a rigorous LCA process.
The argument that “blue” hydrogen at its very best in the best possible cases will be as good as renewably powered electrolysis as it decarbonizes fails the basic tests of logic and reasonableness.
“… natural gas with CCS may be a more sustainable route than hydrogen to decarbonize such applications as power generation.”
This is so completely wrong that it’s remarkable that it made it into the document. First, there is no value in hydrogen as a generation technology. That’s a complete and utter non-starter beginning to end, making electricity vastly more expensive to no climate benefit. Secondly, all bolt-on flue capture programs for electrical generation have cost hundreds of millions or billions and failed. They increase the costs of electrical generation to the level where it was completely uncompetitive in today’s markets.
When wind and solar are trending to $20 per MWh, long-distance transmission of electricity using HVDC exists in lengths thousands of kilometers long and underwater around the world, and there are already 170 GW of grid storage and another 60 GW under construction at the bare beginning of the development of storage, assuming that either natural gas with CCS or hydrogen have any play in electrical generation makes it clear that the authors are simply starting with the assumption that natural gas and hydrogen have a major part to play in the future, and have created an argument for it.
The authors’ argument boils down to that in a perfect world, perfectly monitored and perfectly maintained, “blue” hydrogen would be similar in emissions to green hydrogen today, ignoring the rapidly dropping GHG emissions per MWh of renewables and ignoring that the world of fossil fuels in no way adheres to the premise of perfect monitoring and perfect maintenance.
The authors are performing a life-cycle assessment focusing on greenhouse gas emissions, and it is not scoped to include costs. Having reviewed the costs of the technologies that they are proposing for this hypothetical perfect “blue” hydrogen world, they are vastly higher than just not bothering, shifting to renewables rapidly and electrifying rapidly.
As a contribution to the literature on what will happen in the real world, this is a fairly slight addition, one which is being promoted far beyond its actual merit by the usual suspects.
The new John Deere Z370RS Electric ZTrak zero turn electric riding mower promises all the power and performance Deere’s customers have come to expect from its quiet, maintenance-free electric offerings – but with an all new twist: removable batteries.
The latest residential ZT electric mower from John Deere features a 42″ AccelDeep mower deck for broad, capable cuts through up to 1.25 acres of lawn per charge, which is about what you’d expect from the current generation of battery-powered Deeres – but this is where the new Z370RS Electric ZTrak comes into its own.
Flip the lid behind the comfortably padded yellow seat and you’ll be greeted by six (6!) 56V ARC Lithium batteries from electric outdoor brand EGO. Those removable batteries can be swapped out of the Z370RS for fresh ones in seconds, getting you back to work in less time than it takes to gravity pour a tank of gas.
When John Deere launched the first Z370R, Peter Johnson wrote that electrifying lawn equipment needs to be a priority, citing EPA data that showed gas-powered lawnmowers making up five percent of the total air pollution in the US (despite covering far less than 5% of the total miles driven on that gas). “Moreover,” he writes, “it takes about 800 million gallons of gasoline each year (with an additional 17 million gallons spilled) to fuel this equipment.”
If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them.
Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.
FTC: We use income earning auto affiliate links.More.
Daimler Truck AG CEO Karin Rådström hopped on LinkedIn today and dropped some absolutely wild pro-hydrogen talking points, using words like “emotional” and “inspiring” while making some pretty heady claims about the viability and economics of hydrogen. The rant is doubly embarrassing for another reason: the company’s hydrogen trucks are more than 100 million miles behind Volvo’s electric semis.
UPDATE 22NOV2025: Daimler just delivered five new hydrogen semis for trials.
While it might be hard to imagine why a company as seemingly smart as Daimler Truck AG continues to invest in hydrogen when study after study has shut down its viability as a transport fuel, it makes sense when you consider that the Kuwait Investment Authority (KIA) holds approximately 5% of Daimler and parent company Mercedes’ shares.
That’s not a trivial stake. Indeed, 5% is enough to make KIA one of the few actors with both the access and the motivation to shape conversations about Daimler’s long-term technology bets, and as a major oil-producing country whose economy would undoubtedly take a hit if oil demand plummeted, any future fuel that’s measured molecules instead of electrons isn’t just a concept for the Kuwaiti economy: it’s a lifeline.
In that context, the push to make hydrogen seem like an attractive decarbonization option makes more sense. So, instead of giving Daimler’s hydrogen propaganda team yet another platform to try and convince people that hydrogen might make for a viable transport fuel eventually by giving five Mercedes-Benz GenH2 semi trucks to its customers at Hornbach, Reber Logistik, Teva Germany with its brand ratiopharm, Rhenus, and DHL Supply Chain, I’m just going to re-post Daimler CEO Karin Rådström’s comments from Hydrogen Week.
For some reason – posts about hydrogen always stir up emotions. I think hydrogen (not “instead of” but “in parallel to” electric) plays a role in the decarbonization of heavy duty transport in Europe for three reasons:
If we would go “electric only” we need to get the electric grid to a level where we can build enough charging stations for the 6 million trucks in Europe. It will take many years and be incredibly expensive. A hydrogen infrastructure in parallel will be less expensive and you don’t need a grid connection to build it, putting 2000 H2 stations in Europe is relatively easy.
Europe will rely on import of energy, and it could be transported into Europe from North Africa and Middle East as liquid hydrogen. Better to use that directly as fuel than to make electricity out of it.
Some use cases of our customers are better suited for fuel cells than electric trucks – the fuel cell truck will allow higher payload and longer ranges.
At European Hydrogen Week, I saw firsthand the energy and ambition behind Europe’s net-zero goals. It’s inspiring—but also a wake-up call. We’re not moving fast enough.
What we need:
Large-scale hydrogen production and transport to Europe
A robust refueling network that goes beyond AFIR
And real political support to make it happen – we need smart, efficient regulation that clears the path instead of adding hurdles.
To show what’s possible, we brought our Mercedes-Benz GenH2 to Brussels. From the end of 2026, we’ll deploy a small series of 100 fuel cell trucks to customers.
Let’s build the infrastructure, the momentum, and the partnerships to make zero-emission transport a reality. 🚛 and let’s try to avoid some of the mistakes that we see now while scaling up electric. And let’s stop the debate about “either or”. We need both.
Daimler CEO at European Hydrogen Week; via LinkedIn.
At the risk of sounding “emotional,” Rådström’s claims that building a hydrogen infrastructure in parallel will be less expensive than building an electrical infrastructure, and that “you don’t need a grid connection to build it,” are objectively false.
Next, the claim that, “Europe will rely on import of energy, and it could be transported into Europe from North Africa and Middle East as liquid hydrogen” (emphasis mine), is similarly dubious – especially when faced with the fact that, in 2023, wind and solar already supplied about 27–30% of EU electricity.
Unless, of course, Mercedes’ solid-state batteries don’t work (and she would know more about that than I would, as a mere blogger).
Electrek’s Take
Via Mahle.
As you can imagine, the Karin Rådström post generated quite a few comments at the Electrek watercooler. “Insane to claim that building hydrogen stations would be cheaper than building chargers,” said one fellow writer. “I’m fine with hydrogen for long haul heavy duty, but lying to get us there is idiotic.”
Another comment I liked said, “(Rådström) says that chargers need to be on the grid – you already have a grid, and it’s everywhere!”
At the end of the day, I have to echo the words of one of Mercedes’ storied engineering partners and OEM suppliers, Mahle, whose Chairman, Arnd Franz, who that building out a hydrogen infrastructure won’t be possible without “blue” H made from fossil fuels as recently as last April, and maybe that’s what this is all about: fossil fuel vehicles are where Daimler makes its biggest profits (for now), and muddying the waters and playing up this idea that we’re in some sort of “messy middle” transition makes it just easy enough for a reluctant fleet manager to say, “maybe next time” when it comes to EVs.
We, and the planet, will suffer for such cowardice – but maybe that’s too much malicious intent to ascribe to Ms. Rådström. Maybe this is just a simple “Hanlon’s razor” scenario and there’s nothing much else to read into it.
Let us know what you think of Rådström’s pro-hydrogen comments, and whether or not Daimler’s shareholders should be concerned about the quality of the research behind their CEO’s public posts, in the comments section at the bottom of the page.
SOURCE | IMAGES: Karin Rådström, via LinkedIn.
If you drive an electric vehicle, make charging at home fast, safe, and convenient with a Level 2 charger installed by Qmerit.As the nation’s most trusted EV charger installation network, Qmerit connects you with licensed, background-checked electricians who specialize in EV charging. You’ll get a quick online estimate, upfront pricing, and installation backed by Qmerit’s nationwide quality guarantee. Their pros follow the highest safety standards so you can plug in at home with total peace of mind.
Audi embraced its future in China with the launch of a new Chinese market electric sub-brand called AUDI that ditched the iconic “four rings” logo in favor of four capital letters – but one thing this latest concept hasn’t ditched is the brand’s traditionally teutonic long-roof design language.
Co-developed with Audi’s Chinese production partner, SAIC, the all-new AUDI E SUV concept is based on the PPE (Premium Platform Electric) skateboard, and is only the second model introduced by the company’s domestic sub-brand — which was all-new itself just one year ago.
“The AUDI E SUV concept celebrates the new AUDI brand’s first anniversary following the E concept’s debut in Guangzhou (2024),” said Fermín Soneira, CEO of the Audi and SAIC cooperation, at the E SUV’s unveiling. “It showcases an unmistakable AUDI design language that gives the SUV a prestigious, progressive stance — with no compromise between sporty aesthetics and interior roominess or versatility. This concept embodies our vision for premium electric mobility by fusing Audi’s engineering heritage with digital innovation to fulfill our commitment in China.”
As a vehicle, the AUDI E SUV concept promises to handle “like an Audi,” and is powered by a pair of electric motors good for a combined 500 kW (~670 hp), good enough to get the big crossover from 0-100 km/h (62 mph) in about five seconds. Those efficient motors are fed electrons by a 109 kWh battery riding on AUDI’s 800V Advanced Digital Platform system architecture, and can allegedly add 320 km (~200 miles) of range in under 10 minutes at a high-powered DC fast charging station.
Advertisement – scroll for more content
If you’re a fan of self-driving tech, the AUDI 360 Driving Assist System is the AUDI E SUV concept is for you, with features that, “enable a relaxed and safe driving experience – on highways, in dense city traffic, and during assisted parking.”
If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them.
Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.
FTC: We use income earning auto affiliate links.More.