Connect with us

Published

on

The first part of this analysis on the recently released life-cycle assessment of “blue” hydrogen covered the provenance and background for the paper, as well as the significant and questionable assumptions that the authors make about both expected demand for “blue” hydrogen and the scalability of carbon capture and sequestration it would demand. This second half continues the analysis of assumptions and statements in the paper.

“In general, large-scale blue hydrogen production will be connected to the high-pressure natural gas transmission grid and therefore, methane emissions from final distribution to decentralized consumers (i.e., the low-pressure distribution network) should not be included in the quantification of climate impacts of blue hydrogen.”

The first problem with this is the assumption that massive centralized models of hydrogen generation will be preferable to the current highly distributed creation of hydrogen at the point of consumption. The challenges with distributing hydrogen are clear and obvious, so it’s interesting that they make an assumption that is completely contrary to what is occurring today, and wave away the significant additional challenges — including carbon debt — of creating a massive hydrogen distribution system essentially from scratch.

This also assumes that there will continue to be a distribution network for natural gas. Electrification of heat will continue apace, eliminating this market. But supposing that it does continue, this assumes that perpetuating the leakage problem is in line with actual climate mitigation, which is decidedly not the case. This is not the point of the paper, but is in line with the rest of the paper’s assumptions.

“… natural gas supply must be associated with low GHG emissions, which means that natural gas leaks and methane emissions along the entire supply chain, including extraction, storage, and transport, must be minimized.”

This is in context of what requirements “blue” hydrogen would have to meet in order to be low-carbon hydrogen per the paper.

I agree with this statement, but further say that there is zero reason to believe that this will be widely adhered to as the fossil fuel industry is already lagging substantially in maintenance with declining revenues in regions impacted by the Saudi Arabian-Russian price war, the history of the industry consists of a Ponzi-scheme of paying for remediation with far distant and non-existent revenues — witness the $200 billion in unfunded remediation in Alberta’s oil sands as merely the tip of the iceberg, and as long-distance piping and shipping of natural gas requires a great deal of expensive monitoring and maintenance to maintain that standard.

In other words, while the statement is true as far as it goes, it is so unlikely to be common as to be irrelevant to the actual needs of the world for hydrogen, something that the authors barely acknowledge.

“Our assessment is that CO2 capture technology is already sufficiently mature to allow removal rates at the hydrogen production plant of above 90%. Capture rates close to 100% are technically feasible, slightly decreasing energy efficiencies and increasing costs, but have yet to be demonstrated at scale.”

Once again, 90% is inadequate with over a thousand billion tons of excess CO2 already in the atmosphere. Second, carbon capture at source has been being done since the mid-19th century. It’s not getting magically better. The likelihood that approaching 100% capture rate technologies will be deployed by organizations and individuals who think 90% is good enough and are likely to be rewarded handsomely for achieving that level approaches zero. After all, Equinor has received what I estimate to be over a billion USD in tax breaks for its Sleipner facility, which simply pumps CO2 they extracted back underground, and ExxonMobil touts its Shute Creek facility as the best in the world when it pumps CO2 up in one place then back underground in another place for enhanced oil recovery, benefiting nothing except their bottom line.

Removal of carbon from the atmosphere to draw down CO2 levels toward achieving a stable climate will not be realized by “good enough,” and close to 100% will be so rarely realized globally that it’s not worth discussing.

“It is important to reiterate that no single hydrogen production technology (including electrolysis with renewables) is completely net-zero in terms of GHG emissions over its life cycle and will therefore need additional GHG removal from the atmosphere to comply with strict net-zero targets.”

The authors appear to think that the current CO2e emissions from purely renewable energy are going to persist. As mining, processing, distribution, manufacturing and construction processes decarbonize, the currently very low GHG emissions of renewables full lifecycle will fall. This is equivalent to the common argument against electric cars, that grid electricity isn’t pure. It’s also a remarkable oversight for a group of authors committed to a rigorous LCA process.

The argument that “blue” hydrogen at its very best in the best possible cases will be as good as renewably powered electrolysis as it decarbonizes fails the basic tests of logic and reasonableness.

“… natural gas with CCS may be a more sustainable route than hydrogen to decarbonize such applications as power generation.”

This is so completely wrong that it’s remarkable that it made it into the document. First, there is no value in hydrogen as a generation technology. That’s a complete and utter non-starter beginning to end, making electricity vastly more expensive to no climate benefit. Secondly, all bolt-on flue capture programs for electrical generation have cost hundreds of millions or billions and failed. They increase the costs of electrical generation to the level where it was completely uncompetitive in today’s markets.

When wind and solar are trending to $20 per MWh, long-distance transmission of electricity using HVDC exists in lengths thousands of kilometers long and underwater around the world, and there are already 170 GW of grid storage and another 60 GW under construction at the bare beginning of the development of storage, assuming that either natural gas with CCS or hydrogen have any play in electrical generation makes it clear that the authors are simply starting with the assumption that natural gas and hydrogen have a major part to play in the future, and have created an argument for it.


The authors’ argument boils down to that in a perfect world, perfectly monitored and perfectly maintained, “blue” hydrogen would be similar in emissions to green hydrogen today, ignoring the rapidly dropping GHG emissions per MWh of renewables and ignoring that the world of fossil fuels in no way adheres to the premise of perfect monitoring and perfect maintenance.

The authors are performing a life-cycle assessment focusing on greenhouse gas emissions, and it is not scoped to include costs. Having reviewed the costs of the technologies that they are proposing for this hypothetical perfect “blue” hydrogen world, they are vastly higher than just not bothering, shifting to renewables rapidly and electrifying rapidly.

As a contribution to the literature on what will happen in the real world, this is a fairly slight addition, one which is being promoted far beyond its actual merit by the usual suspects.

Featured image by akitada31 from Pixabay

 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

 

 


Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Tesla jumped the gun, Nissan drivers will have to wait a bit for Supercharger access

Published

on

By

Tesla jumped the gun, Nissan drivers will have to wait a bit for Supercharger access

It sounds like Tesla jumped the gun when announcing that Nissan drivers now have access to the Supercharger network in North America.

They will have to wait a bit.

Yesterday, we reported that Tesla added Nissan to the list of automakers with EVs capable of using the Supercharger network in North America.

However, Tesla has since removed Nissan from its list of automakers with access and switched the Japanese automaker back to the “coming soon” list.

Nissan confirmed to Electrek that access is not currently available, but it will be available by the end of the year.

It sounds like a miscommunication on Tesla’s side. We hear that it should be coming soon.

Elon Musk fired Tesla’s entire charging team – seemingly to make an example of its then-head of charging, Rebecca Tinucci, who reportedly disagreed with Musk about making further layoffs following another layoff wave.

Instead of just firing her, Musk decided to fire the entire team and then sent an email to other Tesla managers using the charging team situation as a warning.

Tesla has since had to rehire several former members of its charging team to rebuild the department.

This is believed to have slowed down the opening of the Supercharger network to other automakers in North America. We were told that communications with Tesla’s charging team were difficult to non-existent for those automakers for weeks earlier this year.

As we have previously reported, the situation has definitely slowed down Tesla’s own deployment of Supercharger stations.

Nonetheless, the Supercharger network recently hit the milestone of 60,000 chargers worldwide.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Northvolt files for bankruptcy, CEO quits

Published

on

By

Northvolt files for bankruptcy, CEO quits

Europe’s “green dream” Northvolt has filed for bankruptcy protection in the US after a rescue package failed to go through, leaving the battery maker with just one week’s worth of cash in the account. Cofounder and CEO Peter Carlsson, who spearheaded a costly expansion, has also quit.

The Swedish-owned battery maker filed for Chapter 11 in the Southern District of Texas, reports Bloomberg, with $5.8 billion debt. CEO Peter Carlsson, Telsa’s former chief products officer, stepped down from his role as CEO after the filing, but will remain onboard as advisor and director.

According to a statement, Northvolt said that its main factory will maintain business as usual during the reorganization, as the company now has a buffer from creditors, giving it time to restructure the balance sheet. However, the company said that this will not impact its business in Germany, and through the court process, Northvolt now has access to about $145 million in cash collateral. An additional $100 million in debtor-in-possession financing will be added to the pot via one of its customers, the report said.

In recent weeks, Northvolt has been in intense negotiations in the hope of securing a $300 million rescue package to give the company a bit more time to seek longer-term funding. But when that deal fell through, the battery maker was forced to seek protection from creditors via the Chapter 11 filing.  

The company still has a $7 billion project in place in Quebec – a new campus that is set to include a cell production plant, battery recycling, and cathode active-material production facilities –  and the bankruptcy won’t affect those plans, the company said on its website. “Northvolt Germany and Northvolt North America, subsidiaries of Northvolt AB with projects in Germany and Canada, are financed separately and will continue to operate as usual outside of the Chapter 11 process as key parts of Northvolt’s strategic positioning.”

The plant is expected to have capacity to produce 30 GWh of battery cell every year, with an expansion set to double that output, making it enough to power 1 million EVs. The Canadian government is putting $1.334 billion CND toward the project, with Quebec chipping in another $1.37 billion CND.

Northvolt has hit hard times in recent months, once thought of as Europe’s best shot to homegrown EVs and the makers of “the world’s greenest battery.” Enthusiasm mounted as the company opened the doors to its first plant in Sweden, in the small town of Skelleftea near the Arctic Circle, in 2021. Billions of dollars have been invested into the company, and Volvo, VW, and BMW rushed to place future orders.

All of this enthusiasm has been fueled by a vision to cut dependency on China by creating greener EV batteries using 100 percent recycled nickel, manganese, and cobalt. Plans were put in place to build factories in Gothenburg, in southern Sweden, and Poland, Germany, and Canada, all backed by huge government subsidies. Back in January, the company raised an additional $5 billion, firmly locking in its position as one of Europe’s best-funded startups and recipient of the largest-ever green loan in the EU.

But then things started going south, with Northvolt’s production problems and massive delays forcing BMW to cancel its €2 billion battery cell order with the company. This past May, Northvolt also announced that it pushing back its plans for an IPO until next year. The interim report that followed revealed the dire state of its finances and how far its production had fallen short of goals, with Carlsson admitting he had been “too aggressive” with the company’s expansion plan.

Since Northvolt has put in place a series of changes to reset the company’s course, including bringing onboard a new CFO, leaving the former CFO to focus solely on expansion plans. Plus the company started making cuts, including closing down its research center, Cuberg, in San Francisco and deprioritizing secondary businesses. At the end of September, Northvolt announced that it would cut 1,600 staff from three Swedish sites and about 20 percent of its international workforce.

Last month, Volvo started proceedings to take over their joint venture with Northvolt, while Volkswagen Group’s representative to Northvolt’s board stepped down this month. Sweden, for its part, is ruling out taking a stake to save its homegrown enterprise, Bloomberg reports. Carlsson had said last month that the company needs more than $900 million to permanently shore up its finances.

Photo credit: Northvolt


If you’re an electric vehicle owner, charge up your car at home with rooftop solar panels. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing on solar, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

YMX Logistics deploys 20 new Orange EV electric yard trucks

Published

on

By

YMX Logistics deploys 20 new Orange EV electric yard trucks

Leading yard operation 3PL YMX Logistics has announced plans to deploy fully twenty (20) of Orange EV’s fully electric Class 8 terminal trucks at a number of distribution and manufacturing sites across North America.

As the shipping and logistics industries increasingly move to embrace electrification, yard operations have proven to be an almost ideal use case for EVs, enabling companies like Orange EV, which specialize in yard hostlers or terminal tractors, to drive real, impactful change. To that end, companies like YMX are partnering with Orange EV.

“This relationship between YMX and Orange EV is a significant step forward in transforming yard operations across North America,” said Matt Yearling, CEO of YMX Logistics. “Besides the initial benefits of reduction in emissions and carbon footprint, our customers are also seeing improvements in the overall operational efficiency and seeking to expand. Our team members have also been sharing positive feedback about their new equipment and highlighting the positive impact on their health and day-to-day activities.”

This Orange looks good in blue

YMX Logistics electric yard trucks; by Orange EV.

One of the most interesting aspects of this story – beyond the Orange EV HUSK-e XP’s almost unbelievable 180,000 lb. GCWR spec. – is that this isn’t a story about California’s ports, which mandate EVs. Instead, YMX is truly deploying these trucks throughout the country, with at least four currently in Chicago (and more on the way).

“Our collaboration with YMX Logistics represents a powerful stride in delivering sustainable yard solutions at scale for enterprise customers,” explains Wayne Mathisen, CEO of Orange EV. “With rising demand for electric yard trucks, our joint efforts ensure that more companies can access the environmental, financial, and operational benefits of electrification … this is a win for the planet, the workforce, and the bottom line of these organizations.”

We interviewed Orange EV founder Kurt Neutgens on The Heavy Equipment Podcast a few months back, but if you’re not familiar with these purpose-built trucks, it’s worth a listen.

HEP-isode 26

SOURCE | IMAGES: YMX Logistics.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending