Connect with us

Published

on

It will be “difficult” for NASA to make a new attempt to launch its massive Moon rocket in October, an official from the US space agency said Tuesday, with a lift-off in November looking more likely. 

The SLS rocket, the most powerful ever designed by NASA, had to be returned overnight to its storage hangar in order to shelter it from the approach of Hurricane Ian. 

The next possible launch windows – determined according to the positions of the Earth and the Moon – are from October 17 to 31, then from November 12 to 27. 

“We know that the earliest it could go is late October, but more than likely we’ll go in the window in the middle of November,” NASA administrator Bill Nelson told CNN.

At a press conference, NASA associate administrator Jim Free was also asked about the rocket’s chances of attempting a lift-off in October. 

“I don’t think we’re going to take anything off the table,” he said. “But it is going to be difficult.” 

After the hurricane has passed by, NASA will have to take the time to change the batteries of the rocket’s self-destruct system, a complex operation that will be carried out in the storage hangar. 

Raising the 98-meter-high (320 foot) rocket and transporting it to its launch pad, before configuring it for takeoff, will also take days. 

The latest setback will therefore significantly postpone the launch of the long-awaited Artemis 1 mission. 

Two launch attempts had already been aborted at the last minute, at the end of August and then at the beginning of September, due to technical problems, including a leak when filling the rocket’s tanks with fuel. 

Fifty years after the last mission of the Apollo program, Artemis 1 will be used to ensure that the Orion capsule, at the top of the rocket, is safe to transport a crew to the Moon in the future.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Researchers Reveal Crucial Ocean Processes That Help Fight Climate Change

Published

on

By

Researchers Reveal Crucial Ocean Processes That Help Fight Climate Change

Organic carbon preservation in ocean sediments, a phenomenon critical to the Earth’s carbon cycle, has been illuminated by new research. The study explores mechanisms that prevent organic carbon from breaking down, a process vital for climate regulation. Preserved carbon, over time, can transform into fossil fuels, locking away carbon dioxide—a leading contributor to climate change. These findings offer insights into the Earth’s natural systems that regulate carbon levels and influence the formation of oil and gas reserves.

Study Identifies Key Carbon Preservation Mechanisms

According to a study led by scientists from The University of Manchester and the University of Leeds and published in the journal Nature Geoscience, two primary processes—sorption and molecular transformation—are crucial for carbon storage in ocean sediments.

Sorption involves the uptake of carbon by mineral surfaces, while molecular transformation converts small, reactive molecules into larger, stable forms. The study used a comprehensive model, integrating real-world sediment data, to identify these processes as dominant contributors to carbon preservation.

AI Provides Deeper Insights into Carbon Storage

Artificial intelligence (AI) was utilised to enhance the study’s model, enabling accurate predictions of carbon storage efficiency. Dr. Peyman Babakhani, a lead researcher, highlighted that AI helped clarify complex environmental processes. The research revealed that carbon preservation in sediments is nearly three times higher than earlier estimates, aligning closely with observed data.

Implications for Climate Change Mitigation

The findings underline the importance of sorption and molecular transformation in protecting organic matter from degradation and facilitating its burial in deeper sediment layers. This preserved carbon can eventually become fossil fuels, effectively keeping carbon dioxide from entering the atmosphere. These insights could influence climate change strategies, such as ocean fertilisation, aimed at enhancing natural carbon storage mechanisms.

By shedding light on these processes, the study opens pathways for managing carbon emissions and leveraging the ocean’s role in the global carbon cycle.

Continue Reading

Science

Lake Mendota’s Bacteria Are Stuck in an Evolutionary Loop, Finds Study

Published

on

By

Lake Mendota's Bacteria Are Stuck in an Evolutionary Loop, Finds Study

Seasonal variations in Lake Mendota in Wisconsin, US, appear to drive rapid evolutionary changes in bacterial species, as revealed through a long-term genetic study. Bacteria within the lake adapt to changing environmental conditions, with species undergoing significant genetic shifts over time. Despite these changes, many bacteria return to nearly identical genetic states each year, creating a cyclical pattern of evolution. The findings shed light on how microbial life responds to seasonal pressures, offering insights into broader ecological and evolutionary processes.

Bacterial Evolution Observed Over Decades

According to a study published in the Nature Microbiology journal, bacterial populations in Lake Mendota adapt to environmental shifts caused by the lake’s seasonal changes. Researchers examined genetic material from a unique archive of 471 water samples collected over 20 years.

Each year, bacteria responded to varying conditions, such as algae blooms in summer and ice cover in winter. Strains within species competed based on their adaptability to specific conditions, leading to a repeated cycle of genetic change.

Impact of Extreme Weather Events

Unusual weather in 2012 provided additional insights into bacterial evolution. During that year, early ice melt, hotter temperatures, and reduced algae levels resulted in significant genetic changes in bacterial communities. Research revealed a notable shift in genes related to nitrogen metabolism among several species, indicating long-term genetic adaptations to these atypical conditions.

Implications for Climate Change

Robin Rohwer, a researcher at the University of Texas at Austin, told Phys.org that climate change may intensify such evolutionary responses, as extreme weather events become more frequent. These findings highlight the adaptability of microbial ecosystems to both gradual and abrupt environmental changes.

Advanced Techniques Unlock New Discoveries

The study, led by Rohwer and supported by computational resources at the Texas Advanced Computing Center, reconstructed bacterial genomes from fragmented DNA samples. With over 30,000 genomes analysed, this research represents one of the most extensive investigations into microbial evolution in a natural setting, offering valuable data for future studies.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


First-Ever Female Burial with Weapons, Believed to Be a Warrior, Discovered in Hungary

Continue Reading

Science

First-Ever Female Burial With Weapons Uncovered in Hungary

Published

on

By

First-Ever Female Burial With Weapons Uncovered in Hungary

The first confirmed case of a female burial with weapons from the 10th century in the Carpathian Basin, Hungary, has been uncovered. Skeletal remains and grave goods, including weaponry, were identified at the Sárrétudvari-Hízóföld cemetery. This discovery, described by experts, challenges prior assumptions about societal roles during the Hungarian Conquest period, a time marked by mounted archers and frequent conflicts. Although evidence of weapons was present, researchers approached conclusions cautiously, ensuring findings were grounded in detailed analysis.

Archaeological Findings and Methodology

The study was led by Dr. Balázs Tihanyi and his colleagues, published in PLOS ONE. As reported by Phys.org, the burial contained a silver penannular hair ring, bell buttons, a bead necklace, and archery-related items such as an arrowhead, quiver parts, and an antler bow plate. Genetic and morphological tests confirmed the individual, referred to as SH-63, was female, despite the poor preservation of skeletal remains.

Dr. Balázs Tihanyi, leader of the research team, told the publication that the combination of grave goods in SH-63’s burial was unique within the cemetery, blending typically male and female items.

Challenges in Determining Warrior Status

The presence of weapons did not lead to assumptions about SH-63’s status as a warrior. Researchers noted that being part of a warrior class involved specific societal roles, and physical evidence alone is insufficient for confirmation.

Indicators such as joint changes and trauma were identified, possibly suggesting activities like horse riding or weapon use. However, it was emphasised that these signs could also result from daily life unrelated to warfare.

Historical Implications

It was reported that this discovery provides a glimpse into the complexity of life in 10th-century Hungary, with SH-63’s burial raising questions about gender roles and social structures of the time. Further investigations are planned to compare this case with others from the same period, aiming to deepen understanding of the era’s societal dynamics.

Continue Reading

Trending