Connect with us

Published

on

NASA’s Double Asteroid Redirection Test (DART) spacecraft is designed to be a one hit wonder. It will end its days by crashing into an asteroid at 24,000 kilometres per hour on September 26. Launched from Earth in November 2021, DART is about the size of a bus and was created to test and prove our ability to defend Earth from a dangerous asteroid.

Landing a direct hit on a target from 11 million kilometres away isn’t easy. But while this sounds far, the asteroid was actually selected by NASA because it is relatively close to Earth. This will give engineers the opportunity to test the spacecraft’s ability to operate itself in the final stages before the impact, as it crashes autonomously.

The target asteroid is called Dimorphos, a body 163 metres in diameter that’s orbiting a 780 metre-wide asteroid called Didymos. This “binary asteroid system” was chosen because Dimorphos is in orbit around Didymos, which makes it easier to measure the result of the impact due to the resulting change in its orbit. However, the Dimorphos system does not currently pose any risk to the Earth.

Regardless, NASA is attempting nothing less than a full scale planetary defence experiment to change an asteroid’s path. The technique being used is called “kinetic impact”, which alters the orbit of the asteroid by crashing into it. That’s essentially what is known as a safety shot in snooker, but played on a planetary level between the spacecraft (as the cue ball) and the asteroid.

A tiny deflection could be sufficient to prove that this technique can actually change the path of an asteroid on a collision path with the Earth.

But the DART spacecraft is going to be completely blown apart by the collision because it will have an impact equivalent to about three tonnes of TNT. In comparison, the atomic bomb dropped on Hiroshima was equal to 15,000 tonnes of TNT.

So, with this level destruction and the distance involved, how will we be able to see the crash? Luckily, the DART spacecraft is not travelling alone on its quest, it is carrying LICIACube, a shoebox-size mini spacecraft, known as a cubesat, developed by the Italian Space Agency and aerospace engineering company Argotec. This little companion has recently separated from the DART spacecraft and is now travelling on its own to witness the impact at a safe distance of 55km.

Never before has a cubesat operated around asteroids so this provides new potential ways of exploring space in the future. The impact will also be observed from Earth using telescopes. Combined, these methods will enable scientists to confirm whether the operation has been successful.

It might, however, take weeks for LICIACube to send all images back to Earth. This period will be utterly nerve wracking – waiting for good news from a spacecraft is always an emotional time for an engineer.

What happens next? An investigation team will look at the aftermath of the crash. These scientists will aim to measure the changes in Dimorphos’ motion around Didymos by observing its orbital period. This is the time during which Dimorphos passes in front and behind Didymos, which will happen every 12 hours.

Ground telescopes will aim to capture images of the Dimorphos’ eclipse as this happens. To cause a significant enough deflection, DART must create at least a 73-second orbital period change after impact – visible as changes in the frequencies of the eclipses.

These measurements will ultimately determine how effective “kinetic impact” technology is in deflecting a potentially hazardous asteroid – we simply don’t know yet.

This is because we actually know very little of the asteroids’ composition. The great uncertainty around how strong Dimorphosis is has made designing a bullet spacecraft a truly enormous engineering challenge. Based on ground observation, the Didymos system is suspected to be a rubble-pile made up of lots of different rocks, but its internal structure is unknown.

There are also great uncertainties about the outcome of the impact. Material ejected afterwards will contribute to the effects of the crash, providing an additional force. We don’t know whether a crater will be formed by the impact or if the asteroid itself will suffer major deformation, meaning we can’t be sure how much force the collision will unleash.

Future missions Our exploration of the asteroid system does not end with DART. The European Space Agency is set to launch the Hera mission in 2024, arriving at Didymos in early 2027 to take a close look at the remaining impact effects.

By observing the deformations caused by the DART impact on Dimorphos, the Hera spacecraft will gain a better understanding of its composition and formation. Knowledge of the internal properties of objects such as Didymos and Dimorphos will also help us better understand the danger they might pose to Earth in the event of an impact.

Ultimately, the lessons from this mission will help verify the mechanics of a high-velocity impact. While laboratory experiments and computer models can already help validate scientists’ impact predictions, full-scale experiments in space such as DART are the closest we will get to the whole picture. Finding out as much as we can about asteroids will help us understand what force we need to hit them with to deflect them.

The DART mission has led to worldwide cooperation among scientists hoping to address the global issue of planetary defence and, together with my colleagues on the DART investigation team, we aim to analyse the impact effects. My own focus will be on studying the motion of the material that is ejected from the impact.

The spacecraft impact is scheduled for September 26 at 19:14 Eastern Daylight Time (00:14 British Summer Time on September 27). You can follow the impact on NASA TV.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

New discovery explains how gold forms in Earth’s volcanic zones!

Published

on

By

New discovery explains how gold forms in Earth's volcanic zones!

A breakthrough discovery by an international team of scientists has highlighted the role of a gold-sulfur complex in the formation of gold deposits on Earth. The study, co-authored by Adam Simon, Professor of Earth and Environmental Sciences at the University of Michigan, was recently . It details the previously unknown conditions under which gold is transported from deep within the Earth’s mantle to the surface.

Role of the Gold-Trisulfur Complex

According to the research, published in the Proceedings of the National Academy of Sciences (2024), a unique gold-trisulfur complex forms under specific pressure and temperature conditions in the mantle, situated 30 to 50 miles beneath active volcanic zones. This complex, which has been debated in scientific circles, plays a significant role in the enrichment of gold in magma that travels to the surface. The findings shed light on why certain subduction zones, where tectonic plates converge, are particularly rich in gold deposits.

Volcanic Activity and Gold Deposits

The study highlights subduction zones around the Pacific Ring of Fire, where volcanic activity is prevalent, as key areas for gold formation. These regions, including locations such as New Zealand, Japan, Alaska, and Chile, provide the ideal geological environment for magma to carry gold from the mantle to surface deposits. The researchers link the processes behind volcanic eruptions to the mechanisms that concentrate gold in these zones.

Scientific Findings and Practical Applications

The researchers developed a thermodynamic model to simulate mantle conditions and confirm the existence of the gold-trisulfur complex. This model not only validates earlier theories about gold-sulfur interactions but also provides a clearer picture of the conditions required for gold-rich mineral systems to form.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Study Reveals Genetic and Linguistic Roots of Indo-European Populations



Samsung’s Galaxy Ring 2 May Show Up Alongside Galaxy S25 Series at the Upcoming Unpacked Event

Continue Reading

Science

First Perentie Lizards Hatched at Los Angeles Zoo: A Major Breeding Milestone

Published

on

By

First Perentie Lizards Hatched at Los Angeles Zoo: A Major Breeding Milestone

Two perentie lizards, among the largest species of lizards globally, have hatched at the Los Angeles Zoo, marking the first time this species has been bred there. Native to Australia, these carnivorous reptiles are known for their impressive size, often exceeding 8 feet in length and weighing over 40 pounds. The zoo, which is one of the few facilities outside Australia to successfully breed them, is now home to the newly hatched pair, who are being carefully monitored in a controlled environment.

First Breeding Success Highlighted by Experts

According to reports from usnews.com, the perentie lizards were bred and hatched for the first time in the facility’s history. Byron Wusstig, curator at the Los Angeles Zoo, shared with the Associated Press that achieving this milestone is a significant accomplishment for the team. These lizards, classified as Varanus giganteus, are rarely seen in zoos outside their native Australia, despite not being endangered.

Special Care for Hatchlings in Early Stages

Reports confirm that the hatchlings are thriving under close observation by the zoo’s staff. They are being kept off-exhibit in a specially managed setting to ensure their health during these crucial initial months. The lizards will eventually join the Australia section of the zoo, near the Komodo dragon habitat, where the father is currently on display.

This species is characterised by its distinct brown skin adorned with cream or yellow markings. Their diet, as stated in reports, includes turtle eggs, insects, birds, small mammals, marsupials, and other reptiles, all of which are consumed whole. As per zoo officials, this breeding success highlights the capabilities of the institution in conserving and caring for unique species, contributing to the understanding of their behaviour and needs in captivity.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Nvidia Executive Claims AI-Powered Robots in the Future Will Be Trained on Simulation, Share a Hive Mind



Study Reveals Genetic and Linguistic Roots of Indo-European Populations

Continue Reading

Science

Study Reveals Genetic and Linguistic Roots of Indo-European Populations

Published

on

By

Study Reveals Genetic and Linguistic Roots of Indo-European Populations

A comprehensive study involving 91 researchers, including Eske Willerslev from the Lundbeck Foundation GeoGenetics Centre at the University of Copenhagen, has provided critical insights into the genetic and linguistic origins of Indo-European populations. The findings, identify two significant migrations during the Bronze Age that contributed to the spread of steppe ancestry across the Mediterranean. The genetic research links Spanish, French and Italian populations to Bell Beaker ancestry, while Greek and Armenian populations have been connected directly to Yamnaya ancestry from the Pontic Steppe region.

Analyses of Steppe Ancestry Distribution

According to the study published on the preprint server bioRxiv, steppe ancestry in Western Europe is attributed to Bell Beaker populations, who combined their genetic profile with local Neolithic farmers. These migrations align with linguistic theories suggesting a shared origin for Italo-Celtic languages. In contrast, Greek and Armenian ancestry reflects direct Yamnaya influence, with no significant local admixture. This divergence between Eastern and Western Mediterranean populations aligns with the Italo-Celtic and Graeco-Armenian linguistic hypotheses.

Genomic and Strontium Isotope Studies

As per reports, the study sequenced 314 ancient genomes dated between 2,100 and 5,200 years ago from regions including Spain, Italy, Greece, and Turkey. A total dataset of 2,403 genomes was analysed, alongside 224 strontium isotope assessments to trace human mobility. Results showed active migration patterns during the Bronze Age, with non-local individuals identified in Greece, Cyprus and Italy. A notable finding was a Scandinavian individual in Cyprus, suggesting Mediterranean trade routes extended far beyond local boundaries.

Implications for Linguistic Migration Models

These findings substantiate linguistic theories connecting Italic and Celtic languages to Bell Beaker ancestry and Greek and Armenian languages to Yamnaya ancestry. The research contradicts alternative hypotheses, including Indo-Greek and Italo-Germanic models. This study provides a clearer understanding of the genetic and linguistic history of Indo-European populations, offering a vital reference for future investigations into ancient human migrations

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Nvidia Executive Claims AI-Powered Robots in the Future Will Be Trained on Simulation, Share a Hive Mind



Samsung’s Galaxy Ring 2 May Show Up Alongside Galaxy S25 Series at the Upcoming Unpacked Event

Continue Reading

Trending