Connect with us

Published

on

National Aeronautics and Space Administration’s (NASA’s) Hubble Space Telescope captured a series of photos of asteroid Dimorphos when it was deliberately hit by a 1,200-pound NASA spacecraft called DART on September 26, 2022, according to their statement.

Hubble‘s time-lapse movie of the aftermath of DART’s collision reveals surprising and remarkable, hour-by-hour changes as dust and chunks of debris were flung into space, NASA said in their statement.

Smashing head on into the asteroid at 13,000 miles per hour, the DART impactor blasted over 1,000 tons of dust and rock off of the asteroid.

The Hubble movie offers invaluable new clues into how the debris was dispersed into a complex pattern in the days following the impact, NASA said.

This was over a volume of space much larger than could be recorded by the LICIACube cubesat, which flew past the binary asteroid minutes after DART’s impact, they said.

The primary objective of DART, which stands for Double Asteroid Redirection Test, was to test our ability to alter the asteroid’s trajectory as it orbits its larger companion asteroid, Didymos, the agency said.

Though neither Didymos nor Dimorphos poses any threat to Earth, data from the mission will help inform researchers how to potentially divert an asteroid’s path away from Earth, if ever necessary, the statement said.

The DART experiment also provided fresh insights into planetary collisions that may have been common in the early solar system.

“The DART impact happened in a binary asteroid system. We’ve never witnessed an object collide with an asteroid in a binary asteroid system before in real time, and it’s really surprising.

“I think it’s fantastic. Too much stuff is going on here. It’s going to take some time to figure out,” said Jian-Yang Li of the Planetary Science Institute in Tucson, Arizona.

The study, led by Li along with 63 other DART team members, was published on March 1 in the journal Nature.

The movie shows three overlapping stages of the impact aftermath: the formation of an ejecta cone, the spiral swirl of debris caught up along the asteroid’s orbit about its companion asteroid, and the tail swept behind the asteroid by the pressure of sunlight, resembling a windsock caught in a breeze, the statement said.

The statement described that the Hubble movie starts at 1.3 hours before impact.

In this view both Didymos and Dimorphos are within the central bright spot; even Hubble can’t resolve the two asteroids separately.

The thin, straight spikes projecting away from the center (and seen in later images) are artifacts of Hubble’s optics.

The first post-impact snapshot is 2 hours after the event.

Debris flies away from the asteroid, moving with a range of speeds faster than four miles per hour, fast enough to escape the asteroid’s gravitational pull, so it does not fall back onto the asteroid, the statement said.

The ejecta forms a largely hollow cone with long, stringy filaments.

At about 17 hours after the impact the debris pattern entered a second stage.

The dynamic interaction within the binary system starts to distort the cone shape of the ejecta pattern, the statement described.

The most prominent structures are rotating, pinwheel-shaped features. The pinwheel is tied to the gravitational pull of the companion asteroid, Didymos.

“This is really unique for this particular incident,” said Li. “When I first saw these images, I couldn’t believe these features. I thought maybe the image was smeared or something.” Hubble next captures the debris being swept back into a comet-like tail by the pressure of sunlight on the tiny dust particles, the statement said.

This stretches out into a debris train where the lightest particles travel the fastest and farthest from the asteroid. The mystery is compounded later when Hubble records the tail splitting in two for a few days, the statement said.

A multitude of other telescopes on Earth and in space, including NASA’s James Webb Space Telescope and Lucy spacecraft, also observed the DART impact and its outcomes.

This Hubble movie is part of a suite of new studies published in the journal Nature about the DART mission.


Affiliate links may be automatically generated – see our ethics statement for details.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2023 hub.

Continue Reading

Science

Could These Meteorites Be from Mercury? New Research Hints at Rare Discovery

Published

on

By

Could These Meteorites Be from Mercury? New Research Hints at Rare Discovery

Scientists have observed whether the meteorites can reach Earth from Mercury. Over thousands of meteorites from Mars and the Moon have been observed, but none have been from Mercury, despite it being a nearby rocky planet. A new study revealed Icarus suggests two meteorites, Ksar Ghilane 022 and Northwest Africa 15915, could belong to Mercurian origin. Such a kind of meteorite can offer a realistic opportunity to study the material of the surface of the planet, if the technical challenges and the cost of sending a spacecraft to Mercury are met.

New Meteorite Samples Show Strong Similarities

As per the new studies reported to Physics.org , Meteorite NWA 7325 and aubrites in the past were considered to be possibly from Mercury. However, the mineral composition of their samples has inconsistencies with the known surface data from the Messenger mission of NASA. Aubrites formed on a planet similar in size to Mercury, lacking spectral and chemical similarities, and further weakened as Mercurian fragments.

Ksar Ghilane 022 and NWA 15915, the new samples, share many traits of Mercury crust, with olivine, oldhamite, pyroxene, and minor albitic plagioclase. The oxygen composition of these matched with the aubrites, signalling a similar planetary origin and putting them among strong Mercurian members.

Key Differences Raise Scientific Questions

There are key differences even after that, and the two meteorites contain very little plagioclase than on the Mercury surface, and are about 4,528 million years older than Mercury’s surface material. If they are from Mercury, there is a possibility that they can represent an ancient crust which is no longer visible on the planet.

Future Missions and Scientific Verification

Relating a meteorite to a particular planet is quite difficult without direct samples. BepiColombo missions are orbiting Mercury currently, and can offer valuable insights to confirm meteorites source. Mercurian meteorites can get valuable insights into the formation, composition and history of the planet. There are further findings to be presented at the Meteoritical Society Meeting 2025 in Australia.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Redmi K80 Ultra With Dimensity 9400+ SoC, 7,410mAh Battery Launched: Price, Specifications



Telegram Bot Reportedly Spotted Selling Sensitive Personal Data of Indian Users

Continue Reading

Science

Rocket Lab Launches ‘Get the Hawk Outta Here’ Mission with Four Satellites from New Zealand

Published

on

By

Rocket Lab Launches ‘Get the Hawk Outta Here’ Mission with Four Satellites from New Zealand

The “Get the Hawk Outta Here” mission saw Rocket Launch juggle four satellites into orbit around Earth on June 27, marking yet another mission on the start-up’s 2025 calendar. The Electron rocket — loaded with three radio-frequency tracking microsatellites and a technology demonstrating payload — lifted off from Pad-A in Launch Complex 1 in Mahia, New Zealand, at 1:28 p.m. EDT (1728 GMT). The launch is to aid Virginia-based geospatial analytics company Hawkeye 360 with its pursuit to broaden radio-frequency intelligence gathering.

Rocket Lab Launches Cluster 12 RF Satellites for Hawkeye 360, Eyes More Missions in 2025

As per the Rocket Lab’s official mission brief, the three working satellites are designed to help Hawkeye 360 triangulate radio signals across the world. Such spacecraft would fill gaps in coverage and provide radio frequency analytics data in near real time from areas of strategic interest. The fourth payload, Kestrel-0A, is a technology demonstrator meant to test advanced capabilities and future enhancements for the Hawkeye constellation.

Rocket Lab has committed to launching a total of 15 satellites across three missions for Hawkeye 360. This mission is themed “Virginia Is For Launch Lovers” and is Electron’s first mission from U.S. soil following the company’s first launch from Wallops Island in January 2023. This latest mission signifies the 67th overall Electron launch and the ninth of 2025 in a sign of the company’s increasing launch cadence.

All satellites were placed into a polar low Earth orbit at about 320 miles (520 km) altitude, ideal for cross-cutting the Earth and thus ensuring fast revisits and high signal collection. Electron’s payload fairings also did their job, protecting the satellites as they lifted off, then releasing them into orbit with pinpoint accuracy.

In its roadmap, Rocket Lab has at least six additional launches this year, and all eyes are on its upcoming reusable Neutron rocket. The company also operates a suborbital Electron variant, HASTE, which serves as a testbed for hypersonic and defence technologies. The latest launch further solidifies Rocket Lab’s position in the small satellite deployment market.

Continue Reading

Science

Astronomers Discover Baby Planets Taking Their First Steps in Nearby Stellar Nursery

Published

on

By

Astronomers Discover Baby Planets Taking Their First Steps in Nearby Stellar Nursery

Astronomers may have just caught a glimpse of the early signs of the formation of “baby” solar systems in the hydrocarbon-rich disc around two young stars in a star-forming region near Earth, in a study that could offer fresh insights into how planetary systems are created. From studying 78 protoplanetary disks — or flattened clouds of gas and dust — in the Rho Ophiuchi cloud complex, researchers spotted spiral and ring-like substructures, which are certain signatures that baby planets are in the process of being born.

The disks, around stars a few hundred thousand years old showed unusual characteristics, indicating that planet and star formation are simultaneous processes in very young systems. In comparison, the Sun is a middle-aged 4.6 billion years old.

High-Res ALMA Imaging Reveals Planet Formation Begins Earlier in Young Star Disks Than Expected

As per the research team, the discovery helps bridge a key observational gap between previous ALMA studies—DSHARP, which focused on million-year-old stars, and eDisk, which studied much younger protostars. By targeting stars of intermediate ages and applying PRIISM super-resolution software to archival ALMA data, researchers achieved images three times sharper than standard methods. Their larger sample led to the identification of 27 disks with structures, including 15 never seen before.

The results indicate that substructures such as rings and spirals, believed to be the fingerprints of planet formation, appear much earlier in a planet’s growth process than previously thought, when the disks are still full of gas and dust. During the childhood of young stars forming in collapsed molecular clouds, these disks were born, and in the same way, young planets formed within the lifetimes of these accretion disks, moved, and shaped the objects in the disk.

Most disks observed were about 30 astronomical units wide, roughly 30 times the Earth-Sun distance. The presence of intricate structures in such early systems implies a parallel evolution of infant stars and planets. The research indicates that star and planet creation might be more closely linked than thought.

The research, which was published on an online site for The Publications of the Astronomical Society of Japan, was led by Ayumu Shoshi of Kyushu University. The present results involve only the Ophiuchus regions, but in the future, as more data become available, we will be able to search for similar early co-evolution amongst other stellar nurseries.

Continue Reading

Trending