Connect with us

Published

on

National Aeronautics and Space Administration’s (NASA’s) Hubble Space Telescope captured a series of photos of asteroid Dimorphos when it was deliberately hit by a 1,200-pound NASA spacecraft called DART on September 26, 2022, according to their statement.

Hubble‘s time-lapse movie of the aftermath of DART’s collision reveals surprising and remarkable, hour-by-hour changes as dust and chunks of debris were flung into space, NASA said in their statement.

Smashing head on into the asteroid at 13,000 miles per hour, the DART impactor blasted over 1,000 tons of dust and rock off of the asteroid.

The Hubble movie offers invaluable new clues into how the debris was dispersed into a complex pattern in the days following the impact, NASA said.

This was over a volume of space much larger than could be recorded by the LICIACube cubesat, which flew past the binary asteroid minutes after DART’s impact, they said.

The primary objective of DART, which stands for Double Asteroid Redirection Test, was to test our ability to alter the asteroid’s trajectory as it orbits its larger companion asteroid, Didymos, the agency said.

Though neither Didymos nor Dimorphos poses any threat to Earth, data from the mission will help inform researchers how to potentially divert an asteroid’s path away from Earth, if ever necessary, the statement said.

The DART experiment also provided fresh insights into planetary collisions that may have been common in the early solar system.

“The DART impact happened in a binary asteroid system. We’ve never witnessed an object collide with an asteroid in a binary asteroid system before in real time, and it’s really surprising.

“I think it’s fantastic. Too much stuff is going on here. It’s going to take some time to figure out,” said Jian-Yang Li of the Planetary Science Institute in Tucson, Arizona.

The study, led by Li along with 63 other DART team members, was published on March 1 in the journal Nature.

The movie shows three overlapping stages of the impact aftermath: the formation of an ejecta cone, the spiral swirl of debris caught up along the asteroid’s orbit about its companion asteroid, and the tail swept behind the asteroid by the pressure of sunlight, resembling a windsock caught in a breeze, the statement said.

The statement described that the Hubble movie starts at 1.3 hours before impact.

In this view both Didymos and Dimorphos are within the central bright spot; even Hubble can’t resolve the two asteroids separately.

The thin, straight spikes projecting away from the center (and seen in later images) are artifacts of Hubble’s optics.

The first post-impact snapshot is 2 hours after the event.

Debris flies away from the asteroid, moving with a range of speeds faster than four miles per hour, fast enough to escape the asteroid’s gravitational pull, so it does not fall back onto the asteroid, the statement said.

The ejecta forms a largely hollow cone with long, stringy filaments.

At about 17 hours after the impact the debris pattern entered a second stage.

The dynamic interaction within the binary system starts to distort the cone shape of the ejecta pattern, the statement described.

The most prominent structures are rotating, pinwheel-shaped features. The pinwheel is tied to the gravitational pull of the companion asteroid, Didymos.

“This is really unique for this particular incident,” said Li. “When I first saw these images, I couldn’t believe these features. I thought maybe the image was smeared or something.” Hubble next captures the debris being swept back into a comet-like tail by the pressure of sunlight on the tiny dust particles, the statement said.

This stretches out into a debris train where the lightest particles travel the fastest and farthest from the asteroid. The mystery is compounded later when Hubble records the tail splitting in two for a few days, the statement said.

A multitude of other telescopes on Earth and in space, including NASA’s James Webb Space Telescope and Lucy spacecraft, also observed the DART impact and its outcomes.

This Hubble movie is part of a suite of new studies published in the journal Nature about the DART mission.


Affiliate links may be automatically generated – see our ethics statement for details.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2023 hub.

Continue Reading

Science

NASA Data Empowers Global Response to Rising Sea Levels

Published

on

By

NASA Data Empowers Global Response to Rising Sea Levels

Coastal communities around the world are confronting the realities of rising sea levels, which threaten both daily life and essential infrastructure. In response, NASA has collaborated with agencies such as the US Department of Defense, the World Bank, and the United Nations to deliver detailed data on global sea level rise. This information, accessible through NASA’s Earth Information Center, is intended to aid in the preparation and planning for coastal impacts expected through the year 2150.

As per a report by NASA, the centre offers projections of future sea levels and potential regional flooding over the next 30 years. The report highlights that this resource combines data from NASA’s ongoing satellite monitoring with computer modelling of ice sheet dynamics and ocean behaviour, alongside assessments from global authorities like the Intergovernmental Panel on Climate Change. These tools are designed to equip communities with accurate data on which they can base crucial coastal infrastructure and climate resilience plans.

Global Applications of NASA’s Data

Global institutions are using NASA’s sea level data to shape policies and implement adaptive strategies in vulnerable regions, the report mentioned. The World Bank, for example, integrates this information into Climate Risk Profiles for countries most susceptible to rising sea levels. Similarly, the U.S. Department of Defense leverages the data to foresee and mitigate the impacts on its coastal facilities, while the U.S. Department of State uses the information in disaster preparedness and adaptation planning for its international allies, the report further adds.

Selwin Hart, Assistant Secretary-General and special adviser to the United Nations on climate action, described the data as “a critical resource for protecting lives and livelihoods,” emphasising the disparity in impacts between a global warming limit of 1.5 degrees Celsius and current policy projections. This data, he noted, underscores the urgent need for action in vulnerable coastal areas.

Accelerating Rise of Global Sea Levels

The current rate of sea level rise has been shown to increase significantly, with nearly all coastal countries observing heightened sea levels from 1970 to 2023. According to Ben Hamlington, head of NASA’s sea level change team, the rise in sea levels is occurring at an accelerated pace, with average increases nearly doubling over the past three decades. Notably, NASA’s projections indicate that Pacific Island nations will see at least a 15-centimetre rise by 2050, accompanied by a marked increase in high-tide flooding.

The new data platform, as explained by Nadya Vinogradova Shiffer, director of NASA’s ocean physics programme, allows communities worldwide to anticipate future flooding scenarios.

Continue Reading

Science

Ancient pebbles in Israel hint at the earliest form of wheel technology

Published

on

By

Ancient pebbles in Israel hint at the earliest form of wheel technology

Archaeologists in Israel have uncovered doughnut-shaped pebbles that may be among the earliest forms of wheel-like technology. Found at the Nahal Ein Gev II site in northern Israel, these 12,000-year-old limestone pebbles feature central holes and are thought to have been used as spindle whorls—a tool for spinning fibres like flax and wool.

Talia Yashuv, a graduate student and co-author of the study at the Hebrew University of Jerusalem’s Institute of Archaeology, told LiveScience that these ancient artefacts suggest early experimentation with rotational tools that could have laid the foundation for later advancements like the potter’s wheel and the cart wheel. This discovery was published in PLOS One on November 13, offering a glimpse into pre-agricultural technology in the region.

The roughly 100 perforated pebbles were analysed by Yashuv and Leore Grosman, a professor of prehistoric archaeology at the same institute. After scanning each pebble in 3D, the team produced detailed models to assess their potential uses. Most of the pebbles were thought unlikely to serve as fishing weights or beads due to their size and shape, which diverge from artefacts used in similar periods. Instead, the team recreated spindle whorls from the scanned models, which traditional craft expert Yonit Crystal used to spin flax and wool. While the flax was easier to handle, the replicas demonstrated that the pebbles were likely effective as spindle whorls, supporting early textile production, the study noted.

Implications of the Findings

The findings indicate that these spindle whorls could mark a key point in technological evolution, potentially linked to new methods of storage and survival. Alex Joffe, a director at the Association for the Study of the Middle East and Africa and experienced archaeologist, told LiveScience that the possibility that these artefacts could have enabled innovations like bags or fishing lines. Yorke Rowan, an archaeology professor at the University of Chicago, echoed this view, noting that the analysis represents a “critical turning point” in early technology.

A Continuing Debate

While these pebbles may represent one of the earliest uses of wheel-like forms, Carole Cheval, an expert in prehistoric textiles at CEPAM in France, told that the publication that she observed that similar objects have been found in other regions, possibly from earlier periods. This adds another layer to understanding the origins of rotational technology, highlighting the ongoing exploration of ancient human innovation.

Continue Reading

Science

Binar satellites re-enter early due to high solar activity

Published

on

By

Binar satellites re-enter early due to high solar activity

An increase in solar activity has resulted in the early re-entry of three CubeSats from Curtin University’s Binar Space Program. These small satellites, which operated at low Earth orbit, were designed to last for at least six months. However, due to intensified solar conditions, they were destroyed within two months, significantly shortening their scientific mission.

CubeSats like Binar-2, 3 and 4 are particularly vulnerable to space weather impacts because they lack propulsion systems that could counteract the heightened atmospheric drag caused by solar activity. The satellite programme had launched Binar-1 in 2021 during relatively low solar activity, which allowed it to complete a full year in orbit.

The Science Behind Solar Activity

As per a report by The Conversation, solar activity, which includes phenomena such as solar flares, sunspots and solar wind, follows an 11-year cycle driven by the Sun’s magnetic field. Known as “solar cycle 25,” this phase has shown unexpected activity levels, currently over 1.5 times higher than projected. This has impacted not only the Binar satellites but also large-scale operations like the Starlink constellation and the International Space Station, both of which require continuous adjustments to counter increased drag.

Impact of Space Weather on Satellites and Earth

Increased solar activity generates higher levels of ionising radiation and charged particles. This can damage sensitive satellite electronics, disrupt radio communications and increase radiation exposure for astronauts. The intensified solar conditions have also expanded the Earth’s atmosphere outward, leading to increased drag for satellites in low Earth orbit. This affects many smaller satellites, which lack the capability to adjust their altitude.

The recent solar activity has also created more visible auroras, with these atmospheric light displays appearing closer to the equator than seen in decades.

Future Considerations for Space Missions

Despite current challenges, solar activity is expected to decline gradually, reaching a minimum by 2030. This pause may offer more favourable conditions for future missions. In response to current conditions, work has commenced on future Binar missions, which may benefit from a more predictable space weather environment.

Continue Reading

Trending