Connect with us

Published

on

In a significant milestone for space exploration, the world’s first wooden satellite, LignoSat, has been successfully launched into Earth’s orbit by the Japanese Aerospace Exploration Agency (JAXA). Designed to explore the feasibility of wood as a sustainable material in satellite construction, LignoSat aims to examine its performance under the harsh conditions of space. The satellite’s mission could potentially reshape the future of space technology by introducing eco-friendly alternatives to traditional materials.

Sustainability Goals in Space Technology

According to the TechExplorist, LignoSat was developed using honoki magnolia wood, known for its durability and resistance to environmental stresses. Measuring 10 cm in length, the satellite was crafted with precision using traditional Japanese woodworking techniques. The project represents a collaborative effort to evaluate the material’s resilience against cosmic radiation, temperature extremes, and physical strain in space.

As reported in an official press release by NASA, the wooden satellite was launched aboard SpaceX-31’s Dragon Cargo Vehicle and deployed from the International Space Station using the JEM Small Satellite Orbital Deployer-30. It was placed in orbit alongside four other CubeSats, forming part of a broader initiative to test innovative satellite designs.

Key Objectives and Experiments

As per reports, LignoSat has been equipped with sensors to monitor stress levels on its wooden panels, measure temperature variations, and assess radiation exposure. Data gathered from these experiments will determine the structural integrity and practicality of using wood in space. Researchers are also investigating whether the geomagnetic field can penetrate the satellite’s wooden structure, potentially affecting its technological operations.

The Future of Eco-Friendly Satellites

With growing concerns over the environmental impact of space missions, the development of sustainable materials for satellite construction is gaining momentum. Traditional satellite components often rely on rare metals and synthetic materials, contributing to space debris and environmental degradation. JAXA’s LignoSat experiment is expected to pave the way for more environmentally conscious solutions in satellite technology. If successful, this initiative could set a precedent for the adoption of sustainable practices in the global space industry.
 

Continue Reading

Science

Scientists Recreate Cosmic ‘Fireballs’ in Lab to Solve Mystery of Missing Gamma Rays

Published

on

By

Scientists recreated cosmic plasma beams at CERN to study why certain gamma rays vanish in space. The results showed the beams remain stable, suggesting ancient intergalactic magnetic fields, not beam collapse, hide the signals. The discovery provides new insight into cosmic jets and the universe’s earliest magnetic traces.

Continue Reading

Science

Silicon Carbide-Based Motor Drive Enables a Smaller, Lighter Electric Aircraft Engine

Published

on

By

A new silicon carbide-based motor drive for hybrid aircraft engines reduces size and weight while improving efficiency. Tested in a Cessna 337, the inverter allows lighter, more compact electric systems, offering better energy use and cabin space. This innovation could accelerate hybrid aircraft adoption and provide valuable hands-on experience for student engineers.

Continue Reading

Science

Southern Taurid Meteor Shower 2025 Promises Bright Fireballs in a Rare Swarm Year

Published

on

By

The Southern Taurid meteor shower peaks overnight on November 4–5, 2025, bringing a rare “swarm year” filled with bright fireballs from Comet Encke’s debris. Skywatchers can expect slow, glowing meteors—some as bright as fireballs—despite interference from the nearly full Moon. Experts predict up to 10 visible Taurid meteors per hour under dark, clear skie…

Continue Reading

Trending