Connect with us

Published

on

Engineers and materials scientists have achieved a major advancement in battery technology, developing a lithium-sulfur battery that retains 80 percent of its charge capacity after 25,000 charging cycles. The new design, which uses a specially formulated electrode, represents a significant improvement over conventional lithium-ion batteries. The breakthrough could pave the way for smaller, lighter, and longer-lasting energy storage solutions, addressing critical demands in electronics and electric vehicles.

Key Innovations in the Study

According to a study published in Nature, sulfur was utilised as a core component for the battery’s solid electrode. Despite being abundant and cost-effective, sulfur has historically posed challenges due to issues such as ion loss and expansion during reactions with lithium. These problems were tackled by incorporating a glass-like mixture composed of sulfur, boron, lithium, phosphorus, and iodine. The iodine element was found to enhance electron movement during redox reactions, allowing for faster charging and improved performance.

As reported by Techxplore, the research demonstrated that the porous atomic structure of the electrode facilitated ion diffusion, eliminating the need for intermediary movements. This structural stability, combined with the chemical properties of the glass-phase electrolyte, contributed to the battery’s durability across an unprecedented number of cycles.

Performance and Potential Applications

The experimental lithium-sulfur battery maintained its capacity even under high temperatures, a notable advantage in demanding environments. Standard lithium-ion batteries typically degrade after approximately 1,000 cycles, making this new battery’s longevity a striking development. Despite its promise, the study’s authors acknowledged the need for further research to improve energy density and explore alternative materials that could reduce the battery’s overall weight.

Efforts are being directed at refining this technology to support the growing demand for energy storage in applications ranging from consumer electronics to renewable energy systems.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.



Heavy Dark Matter Could Break the Standard Model, New Research Shows

Continue Reading

Science

NASA to Launch First Quantum Sensor for Gravity Monitoring in Space

Published

on

By

NASA to Launch First Quantum Sensor for Gravity Monitoring in Space

NASA’s Jet Propulsion Laboratory, commercial companies, and academic institutions together are developing the first space-based quantum sensors for gravitational measurement. Two groups of very cold rubidium atoms will be used as weights for the Quantum Gravity Gradiometer Pathfinder (QGGPf) instrument, ensuring accurate measurements over long periods. Measuring gravity with a volume of 0.3 cubic yards (0.25 cubic meters) and weighing just over 275 pounds (125 kg), the instrument will be smaller and lighter than conventional space-based gravity instruments.

Quantum sensors offer enormous promise for sensitivity; estimates suggest they could be as much as ten times more sensitive in tracking gravity than conventional sensors. Approved to begin at the end of the decade, the technology validation project aims to test novel atomic-scale atomic manipulation of interactions between light and matter. To progress the sensor head technology and the laser optical system, NASA is working with small companies. The QGGPf instrument could lead to planetary science and fundamental physics applications.

NASA’s Quantum Gravity Sensor to Reveal Earth’s Subsurface

According to a NASA post, the Jet Propulsion Laboratory, private companies, and academic institutions are developing the first space-based quantum sensor for measuring gravity. This mission, supported by NASA’s Earth Science Technology Office (ESTO), will pave the way for groundbreaking observations of everything from petroleum reserves to global supplies of fresh water. Its gravitational field is dynamic and changing every day as geologic processes distribute mass throughout its surface. Sensitive instruments called gravity gradiometers can map the subtleties of Earth’s gravitational field and link them to belowground structures such as mineral deposits and aquifers.

The Quantum Gravity Gradiometer Pathfinder (QGGPf) instrument will use two clouds of ultracold rubidium atoms as test masses. The difference in acceleration between these matter waves will measure the difference in acceleration between these matter waves to locate gravitational anomalies. This system allows for space-based gravity measurements to remain accurate over long periods and is smaller and lighter than traditional space-based gravity instruments.

NASA Tests Atomic-Scale Tech to Advance Space Sensors and Earth Science

The main purpose of this technology validation mission is to test a collection of novel technologies for manipulating interactions between light and matter at the atomic scale. With JPL partnering with AOSense and Infleqtion to enhance sensor head technology and NASA’s Goddard Space Flight Center working with Vector Atomic to advance the laser optical system, the project involves notable partnerships between NASA and a few quantum-focused entrepreneurs.

Ultimately, the findings of this Pathfinder project might increase our capacity to explore Earth, understand far-off worlds, and value the role gravity plays in creating the universe.

Continue Reading

Science

NASA’s Hubble Shares Detailed Mosaic of the Sombrero Galaxy

Published

on

By

NASA’s Hubble Shares Detailed Mosaic of the Sombrero Galaxy

NASA’s Hubble Space Telescope, on its 35th anniversary, reprocessed a detailed image of the Sombrero Galaxy (Messier 104) on April 11, shared by the European Space Agency. This improvised image, generated from numerous Hubble images, signals fine dust structures, the luminous galactic nucleus with a backdrop occupied by stars and various distant galaxies. This mosaic, taken from the updated data and refined processing techniques, makes it a significant upgrade to previous Hubble observations. This release marks a milestone in the so-far legacy of the Hubble Space Telescope, showcasing the evolution of modern techniques and escalation into archival space imagery.

Research and Discovery

Katie Noll and other scientists of the European Space Agency worked in collaboration with NASA using the Hubble Space Telescope. New imaging technology and methods were used to build upon the original Hubble image released in October 2003. On November 25, 2024, the James Webb Space Telescope also offered a fresh image and perspective on the galaxy, further enriching the research.
The Sombrero Galaxy is located about 30 million light years away in the Virgo constellation and is renowned for its unique shape that resembles a sombrero hat. Its sharp and edgy orientation, titled just six degrees, throws a dramatic view with a dust-laced disc and a brightening central bulge.

Structure and Star Formation

In terms of star formation, the Sombrero Galaxy is visually rich but surprisingly calm. Within its dusty disc, less than one solar mass is transformed into stars every year. This galaxy is so silent that even its massive black hole, with a weight of nine billion solar masses, stays inactive or dormant. Looking into the structure of the galaxy, it is baffling as it displays the classic disc of spiral galaxies.
However, it also features a halo and bump similar to those of elliptical galaxies. This uneven combination leaves scientists unsure of whether it should be kept in the category of elliptical or somewhere in between.

Future Exploration

The crucial part is analysing the chemical composition of stars in the galaxy’s halo. In the precise measurements done by Hubble there revealed an astonishing presence of metal-rich stars was revealed in its outer region. Researchers believe that the Sombrero Galaxy could have blended with other large galaxies billions of years ago, resulting in the mysterious hybrid structure observed in the present.

Scientists are looking forward to fusing Hubble’s optical data with infrared imaging from the James Webb Space Telescope for future investigation of the galaxy’s structure. This multi-wavelength research could unleash deeper insights about its formation and clarify how galaxy mergers can shape its evolution.

Continue Reading

Science

Did Domesticated Cats Originate in Tunisia? New Study Sheds Light

Published

on

By

Did Domesticated Cats Originate in Tunisia? New Study Sheds Light

The origin of domestic cats has been a prominent topic amongst researchers. Their emergence has been linked to the Neolithic period, where they accompanied the farmers while spreading across Europe, along with the agricultural adaptation. However, further investigations have been conducted wherein the significance puzzled the archaeologists. Recently, two large-scale investigations were conducted by the University of Rome Tor Vergata and 42 institutions, and another by the University of Exeter and contributors from 37 institutions, pointing out that Tunisia could be the place of the origin of the domestic cat.

The Tor Vergata Study on Cats

The expert team of researchers from the University of Rome Tor Vergata conducted paleo-genomic analyses, where they analyzed the specimens of cats from 97 archaeological sites across Europe and Anatolia. Likewise, they also took samples from North Africa, Bulgaria, and Italy.

According to the study published on bioRxiv titled “The dispersal of domestic cats from Northern Africa and their introduction to Europe over the last two millennia”, the researchers analysed a total of 70 low-coverage ancient genomes, 37 radiocarbon-dated cat remains, and 17 modern and museum genomes.

The Tor Vergata Study Results

The Tor Vergata Team, as a result of the nuclear DNA analyses, identified felines embedded by domestic ancestry that appeared from the first century CE onwards in Europe. The team also identified two introductory waves — one from the second century BCE, where wildcats were brought from Northwest Africa to Sardinia, raising the current island population, whereas the other wave belonged to the Roman Imperial period, where the cats genetically sounded similar to domestic cats in Europe. Here, Tunisia was observed as the base for early domestication.

The University of Exeter Study

According to a reprint titled, “Redefining the timing and circumstances of cat domestication, their dispersal trajectories, and the extirpation of European Wildcats,” the collaborative study by the University of Exeter shed light on a distinct timeline. They analysed 2,416 archeological field bones around 206 sites and cross-referenced morphological data, accompanied by genetic findings.

The key findings of this collaborative study defined that domestic cats first appeared in the early first millennium BCE in Europe. Their existence occurred before Roman expansion.

The Egyptian Connection

According to mythological theories, the emergence of domestication of cats was related to religious and cultural dimensions. In Egypt, the cats were considered holy. Also, in Greek culture, these creatures became religious symbols of Artemis and Diana — a multifaceted divinity.

Although the two studies offer different understandings, the results indicate that cats appeared in Europe after moving from North Africa as a result of cultural practices, religious reverence, and trade networks.

Continue Reading

Trending