Connect with us

Published

on

The U.S. Department of Energy (DOE) and the White House have made offshore wind a centerpiece of plans to strengthen the nation’s energy infrastructure, announcing a goal to deploy 30 gigawatts of offshore wind by 2030 — a huge leap from the 42 megawatts (MW) currently in operation. Not only could this provide enough electricity to power 10 million American homes and cut carbon dioxide emissions by 78 million metric tons, it could also support as many as 77,000 new jobs.

The success of this initiative will rely, in large part, on partnerships to accelerate research and development (R&D) and establish new offshore systems in such an ambitious time frame. DOE’s National Renewable Energy Laboratory (NREL) is certain to be at the center of many of these efforts, contributing expertise in research related to offshore wind as well as building coalitions.

NREL has a long, successful track record of collaboration with partners in industry, agencies at all levels of government, and the research community. Offshore wind project partnerships have given NREL the insight needed to develop innovations that solve real-world problems and become the recognized standards for industry. For example, 80% of all prototypes for offshore wind floating platforms have been designed with the help of NREL open-source analysis tools — which NREL created through collaboration with laboratory partners.

With recent announcements of a national goal to deploy 30 gigawatts of offshore wind energy by 2030 and the go-ahead to install the first commercial-scale U.S. offshore wind project, NREL and its partners are poised to help meet this ambitious target. Semisubmersible offshore wind platforms accounted for 89% of substructures in floating wind projects either installed or announced in 2019. Other projects may use spar or tension-leg platform substructures. Graphics by Josh Bauer, NREL

NREL’s partners have helped the laboratory build a broad, in-depth understanding of the unique challenges of offshore environments. Offshore wind’s remote locations, deep waters, and extreme weather and ocean conditions present additional design, installation, and operation hurdles in the form of efficiency, cost, and durability.

Offshore wind collaborations bring together the research expertise of NREL staff with the know-how of industry partners, the policymaking perspective of government agencies, and additional support from other laboratories and universities. Researchers work with partners to characterize wind resourcesoptimize plants and turbinesanalyze techno-economic and market factors, and assess potential environmental impacts.

In particular, partners rely on NREL’s pioneering research to boost the performance and market viability of floating platform technologies needed to capture energy in the deepwater locations that account for nearly 60% of U.S. offshore wind resources. The laboratory’s researchers have most recently turned their attention to the integration of offshore wind energy with land-based utility systems to increase grid reliability, resilience, and efficiency.

Transmission of offshore wind energy relies on equipment such as undersea cables to carry power back to the mainland.

In Fiscal Year (FY) 2021, more than $10 million in funding for NREL offshore wind research projects came from partnerships with industry. The NREL team is working with more than 45 commercial, government, and research organizations on offshore, land-based, and distributed wind research projects in 2021.

This reflects the overall success of the laboratory in cultivating partnerships. Over the last 12 years, NREL has brought in $1 billion in partnership contracts, with more than 900 active partnership agreements and close to 600 unique partners in FY 2020.

With the nation’s first commercial-scale offshore wind development recently cleared for installation by the U.S. Department of the Interior off the coast of Massachusetts, the NREL offshore wind team hopes to engage with new partners to grow its collaborative base and make even more meaningful contributions to this burgeoning industry in the coming years.

Giving Industry the Tools To Compete

Industry partners know they can bank on the intellectual capital of experienced NREL researchers to develop and refine breakthrough offshore wind technologies and provide the balanced, market-savvy guidance needed for successful deployment. In addition, NREL offers industry partners hands-on research collaboration, technical assistance, deployment guidance, research facility use, and technology licensing.

“Collaboration with industry is key to making sure our R&D addresses real-world issues and priorities, while helping transfer scientific knowledge from the lab to the marketplace,” said NREL Principal Engineer Jeroen van Dam. “We’re giving offshore developers the tools to establish market parity — and giving the United States resources to join the field of international players.”

Through collaborations with the primary offshore wind regulators — the Bureau of Ocean Energy Management (BOEM) and the Bureau of Safety and Environmental Enforcement — and in coordination with the Business Network for Offshore Wind and the American Clean Power Association trade organizations, NREL is helping lead the development of industry standards that will define the requirements for utility-scale deployment of offshore wind in the United States. The team also works with individual companies — from startups to established corporations — including system operators, developers, original equipment manufacturers, energy suppliers, and investors. Scores of U.S. companies are currently involved in building, running, or supporting supply chains related to offshore systems.

The laboratory provides a credible source for objective expertise and validated data, bolstering rather than competing with industry efforts. NREL research focuses on early-stage technologies, where industry investments tend to be lean, while also targeting R&D priorities with potential for future commercialization. This has included collaboration on tools needed for industry to eventually develop larger, more powerful turbines and optimize system performance, efficiency, reliability, and affordability.

NREL takes broader economic factors into consideration when assessing the potential impact of offshore wind research and development. Offshore wind could trigger more than $12 billion per year in U.S. capital investment in offshore wind projects and spur significant activity and growth for ports, factories, and construction.

NREL also takes bigger economic factors into consideration when assessing the potential impact of offshore wind research and development. Eventually, it is estimated that offshore wind could trigger more than $12 billion per year in U.S. capital investment and spur significant activity and growth for ports, factories, and construction operations.

NREL analysts help developers and other industry partners gain crucial, unbiased understanding of the balance among potential offshore wind costs, revenues, and risks within the broader context of technical, legal, regulatory, tax, and policy issues. NREL market reports provide the data needed to support decision-making, including information critical to building the skilled workforce necessary for industry growth.

Building Coalitions To Spur Innovation

NREL has provided ongoing leadership to forge collaborative partnerships that bring together top minds from a range of sectors to form a virtual think tank of offshore wind research experts. In this convening role, NREL acts as a catalyst for exchanging information, tackling large research projects, and providing industry and policy decision makers with the body of scientific knowledge needed to champion new approaches.

NREL’s Walt Musial and Brent Rice join partners to tour the world’s first floating offshore wind farm off the coast of Peterhead, Scotland. Photo by Brent Rice, NREL

A major component of the newly announced U.S. offshore wind initiative announced by the White House calls on the National Offshore Wind R&D Consortium (NOWRDC) to refine the technology needed for deployment at a scale previously unprecedented in this country. The NOWRDC, which is managed by the New York State Energy Research and Development Authority (NYSERDA) with contributions from four other states plus DOE, benefits from the technical direction of NREL Offshore Wind Platform Lead Walt Musial, as well as the laboratory’s regular representation on the NOWRDC R&D Advisory Group and leadership of several projects.

“The developers and states really set the pace,” Musial said. “They’re ultimately the ones who will be responsible for rolling out and operating new offshore systems. Our job is to arm them with the information they need to maximize clean energy production in ways that will work best to help them achieve the lowest cost for their project.”

The laboratory’s involvement in coalition efforts reaches across the country and around the globe. Many International Energy Agency Wind Technology Collaboration Programme (IEA Wind) research tasks, which engage academia and industry across three continents, are led by NREL research staff. This includes development of a 15-MW reference turbine in partnership with IEA Wind and DOE’s Wind Energy Technologies Office to help design larger, more powerful, next-generation turbines.

NREL’s global and national partnerships are helping design larger, more powerful, next-generation offshore wind technologies, such as the IEA Wind 15-MW reference turbine.

NREL has a long, successful history of partnerships with international and U.S. universities and research institutions, including other national laboratories. The laboratory’s university affiliations encompass professors collaborating on NREL projects, NREL researchers advising graduate students, and projects supported by university funding. Consortia comprising multiple institutions and larger collaborations that involve several different agencies, universities, labs, and private-sector partners bring a range of perspectives to offshore wind solutions.

Collaborative efforts helmed by other U.S. government agencies, including DOE’s Advanced Research Projects Agency-Energy (ARPA-E) office and the National Oceanic and Atmospheric Administration (NOAA), also rely on NREL research expertise. For example, ARPA-E has funded the Aerodynamic Turbines Lighter and Afloat with Nautical Technologies and Integrated Servo-control (ATLANTIS) program to develop new floating offshore wind turbines by tightly integrating control systems and design. NREL leads three ATLANTIS projects, working with one other national laboratory, four universities, and four industry partners.

Tapping One-of-a-Kind Offshore Wind Expertise

So, why do all of these organizations choose to partner with NREL on offshore wind research projects?

Certain collaborative undertakings rely on NREL’s high-performance Eagle supercomputer and world-class Flatirons Campus research facilities to put innovative offshore wind technologies and strategies through their paces. NREL software tools make it possible for researchers and partners to build models and simulate performance based on the laboratory’s formidable collections of data.

But NREL also offers one-of-a-kind expertise from its staff of 150 wind energy scientists, engineers, and analysts, many of whom contribute their multidisciplinary knowledge to offshore projects. With numerous cumulative decades of research experience, the team is able to tap a deep base of knowledge specific to offshore wind, as well as wider-reaching input from experts in related disciplines such as land-based wind power, other areas of clean energy generation, transmission, and integration. This cross-cutting approach has recently led scientists to uncover new efficiencies for converting wind energy to hydrogen that can be readily stored and used for a range of applications.

In surveys, multiple partners have given NREL high marks for its collaborative approach, distinct technical capabilities, and strong understanding of current needs and priorities.

“If we want the nation’s ambitious vision for offshore wind to become reality, we all need to pull together,” Musial said.

“These partnerships with industry, universities, other labs, and government agencies are crucial to developing the right technology, installing it at the right locations, and connecting it to the grid so that we can maximize offshore’s contribution to the country’s affordable clean energy mix.”

Article courtesy of the NREL, the U.S. Department of Energy.


Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

RIZON class 4 and 5 electric MD trucks arrive in Canada

Published

on

By

RIZON class 4 and 5 electric MD trucks arrive in Canada

Daimler’s new, all-electric truck brand made its Canadian debut this week with the official market launch of its battery electric class 4 and 5 medium duty work trucks.

After making its North American debut at the 2023 ACT Expo in Anaheim, California, Daimler Truck’s RIZON brand has continued on a steady march towards production with initial preorders set to open this June. But it won’t just be Americans who can order a new RIZON electric box truck – Canadians will be able to add them to their fleets at the same time.

“Canada is very advanced regarding green energy and infrastructure and is a natural next step for RIZON’s second market,” explains Andreas Deuschle, the Global Head of RIZON. “We are very happy to bring our zero-emission solution to Canadian customers. They are proven OEM trucks with the latest technology from Daimler Truck.”

Modernism and mandates

RIZON electric truck interior; via Daimler Truck.

Along with California and a handful of other US states, the Canadian government has plans to limit (or outright ban) the use of diesel trucks on its roads. In the case of Canada, the nation has committed to a zero emissions goal by 2050 – but Daimler could have gotten there without launching a new brand.

So, why is Daimler launching a new brand?

RIZON is about reaching new customers with a chassis that’s been designed from the ground-up to be an EV. These customers might be new to Daimler, or looking to replace an aging fleet of Isuzu or (more likely) Mitsubishi Fuso cabovers with something a little more modern.

What they’ll find in a RIZON, then, is a smooth, quiet, and car-like ride that will make the “step up” from something like a Ford E-Transit easier than they might think.

Our own Jameson Dow got to drive a RIZON e18L model at an event hosted by Velocity Truck Centers at Irwindale Speedway last year, and came away impressed with the truck’s smooth acceleration and adjustable regenerative braking.

RIZON will offer four model variants for Canadian customers, the e16L, e16M, e18L, and the e18M, with a range of configurations and options ranging from 7.25 to 8.55 ton GVWRs.

Electrek’s Take

There’s definitely a place in the North American market for an agile, easy-to-drive medium duty truck like the RIZON, and Daimler’s nationwide network of Freightliner and Western Star dealers should give first time MD buyers a bit more peach of mind than they might get from a startup brand.

You can check out the specs on each of the RIZON electric models, below, then let us know what you think of these new cabover EVs in the comments.

Image courtsy Dailer Trucks.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

777 hp electric overland concept from Italdesign bows in Beijing [video]

Published

on

By

777 hp electric overland concept from Italdesign bows in Beijing [video]

The all-new, all-electric Italdesign Quintessenza concept is a high-tech Italian take on the Porsche Dakar concept that’s just begging to be put into production.

Making its debut at the Beijing Auto Show, the Italdesign Quintessenza concept embodies both the dynamic prowess of a GT and the versatile adaptability of a pick-up truck. At least, that’s what its makers say. And, if your idea of a pickup truck leans more towards “Subaru Brat” than “Ford F-150 Lightning,” that’s probably right!

The rear section of the Quintessenza converts from a “hatchback” to an open “pickup” bed in true Brat fashion. The rear seats are designed to flip 180-degrees backwards, providing a rear-facing, panoramic “stargazing” mode that promises, “(the) experience and feeling of connection with nature and the outside world.”

Stargazing mode

In its more conventional GT “mode,” the Quintessenza is arguably the best-looking Italdesign concept to come out in years, with vertical lighting elements up front and aggressively-sculpted rear haunches that this writer thinks would be a natural for Audi.

Those design elements aren’t just aesthetic – they’re loaded with electronics. “Two aerodynamic fins that integrate the ADAS systems are present on the upper back of the roof, at the level of the C-pillars,” reads the official release. “They map the surrounding environment when the satellite signal is poor, and offer multifunction lights indicating the car’s driving mode and braking when the hard top is removed.”

Quintessenza vertical elements

So, what kind of vehicle is the Italdesign Quintessenza? Is it a true overland GT, in the style of the Porsche Dakar or 911 SC/RS (the rally car that became the 959)? Is it a high-end spin on the classic Subaru Brat? A futuristic Ute for traversing the Australian outback? Or is it something else entirely?

That’s above our pay grades – but you, dear readers? You guys know what’s up, so check out the official Quintessenza launch video (below), then let us know what you think of Italdesign’s latest in the comments section at the bottom of the page.

Italdesign Quintessenza

DIMENSIONS

  • Length 5561 mm
  • Height 1580 mm
  • Width (front/rear) 2200 mm
  • Wheelbase 3240 mm
  • Front overhang 1003 mm
  • Rear overhang 1318 mm
  • Number of passengers 2+2
  • Body Lightweight Aluminum structure
  • Ground height Adjustable 200-280 mm

POWERTRAIN + PERFORMANCE

  • Battery 150kWh/800V
  • Power 580kW (approx. 777 hp)
  • Range 750 Km (approx. 465 miles)
  • 0-100 Km/h < 3 seconds
  • 1 Electric Drive Unit Front axle
  • 2 InWheel motor rear axles

SOURCE | IMAGES: Italdesign.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

The new Momentum Cito E+ dares you to leave the car at home [Video]

Published

on

By

The new Momentum Cito E+ dares you to leave the car at home [Video]

All the cool suburbanites are already taking their kids to school, loading up at the farmers’ market, and making deliveries on clever and capable cargo e-bikes, but the new Momentum Cito E+ from Giant raises the cargo bike bar even higher — and makes leaving the car at home easier than ever.

Momentum is a new brand of “lifestyle” e-bikes from Giant Group designed to deliver premium features to customers while still hitting that $3,000-4,000 market “sweet spot.” Their latest bike, the all-new for 2024 Cito E+ utility bike, does just that, coming to market with a premium battery, Bluetooth technology, a suite of high-end safety features, and a $3,200 starting price.

Premium battery

Getting the most out of your e-bike often means getting the most out of your battery — and Momentum absolutely gets that. The Cito E+ ships with a 780 Watt-hour Panasonic battery pack with 22700 cells that have been optimized for e-bike use.

Compared to other ebike batteries with similar power ratings, the Momentum’s Panasonic battery promises to be lighter and more durable, with superior IPX7 weather protection, thermal regulation, and other safety features built-in (in fact, Panasonic was the first e-bike supplier to score a UL safety rating for its batteries).

The battery is easily removable for charging at home or in an office, but it can be charged while it’s in the bike, too. Either way, charging won’t take long — from 0 to 80% of charge (approx. 60 miles) of range is available in 3.5 hours, while a full (75 mile) charge takes less than 5 hours.

Connected cargo bike

As our test rider highlights in the video (above), the Momentum Cito E+ uses a proprietary battery management system, or BMS, to monitor the battery pack for maximum efficiency and reliability down to the individual cell level.

The BMS uses Bluetooth connectivity to transfer battery health data, state of charge, and other important information straight to the RideControl app, which enables the bike’s owner to get an in-depth look at the overall state of their e-bike and provides valuable diagnostic data to both the technicians tasked with servicing the bike and Giant themselves, to help develop even better e-bikes in the future.

2024 Giant Group dealership map; via ScrapeHero.

That connection to Giant Group is a huge potential benefit to Momentum Cito E+ buyers, by the way, as it gives them access to support from more than 1,200 brick and mortar Giant dealers across the US alone (above).

That’s a serious advantage that online-only bike brands simply can’t match.

Safety first … and maybe second, too

Momentum’s commitment to safety doesn’t stop at the battery. The Cito E+ features confidence-inspiring 4 piston hydraulic disc brakes and a heavy duty suspension for predictable handling even under heavy loads — important if you have to suddenly haul the bike down from its electronically assisted 28 mph top speed with precious kids and cargo on the back.

LED head and taillights with a lever-activated taillight ensure Cito E+ riders will be seen, too, helping you stay safer after hours.

Accessories and add-ons

Momentum Cito E+ top tube accessory and Momentum front basket shown; image by Electrek.

Momentum’s Cito E+ offers a comprehensive selection of accessories to help optimize it for each rider’s unique use case — whether that’s hauling up to 132 lbs. of cargo on the rear rack and 33 lbs. on the optional front basket (shown, above), or adding 2 Thule Yepp Maxi seats and getting the little ones to school five times a week.

You can find out more about the Momentum Cito E+ and the brand’s available accessories by clicking here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending