Connect with us

Published

on

By Devonie McCamey

A quick scan of recent energy-related headlines and industry announcements shows rising interest in hybrids — and we are not talking about cars.

Hybrid renewable energy systems combine multiple renewable energy and/or energy storage technologies into a single plant, and they represent an important subset of the broader hybrid systems universe. These integrated power systems are increasingly being lauded as key to unlocking maximum efficiency and cost savings in future decarbonized grids — but a growing collection of National Renewable Energy Laboratory (NREL) analysis indicates there are still challenges in evaluating the benefits of hybrids with the tools used to help plan those future grids.

In comparing hybrids to standalone alternatives, it is important to tackle questions like: Is it always beneficial to combine renewable and storage technologies, instead of siting each technology where their individual contributions to the grid can be maximized? Or are only certain hybrid designs beneficial? Does the energy research community consistently represent the characteristics of hybrids in power system models? And are we using common definitions when studying hybrids and their potential impacts?

Turning over a Magic 8-Ball might bring up the response: Concentrate and ask again.

“At NREL, we’re working to represent hybrid systems in our models in a more nuanced, detailed way to try to answer these questions — and ultimately advance the state of modeling to ensure consistency in how hybrids are treated across different tools,” said Caitlin Murphy, NREL senior analyst and lead author of several recent studies of hybrid systems. “With growing interest in these systems that can be designed and sized in lots of different ways, it’s crucial to determine the value they provide to the grid — in the form of energy, capacity, and ancillary services — particularly relative to deploying each technology separately.”

The results of this body of work highlight some gaps between what different models show and what many in the energy community have — perhaps prematurely — proclaimed when it comes to the value of hybrid systems to the future grid.

“Hybridization creates opportunities and challenges for the design, operation, and regulation of energy markets and policies — and current data, methods, and analysis tools are insufficient for fully representing the costs, value, and system impacts of hybrid energy systems,” said Paul Denholm, NREL principal energy analyst and coauthor. “Ultimately, our research points to a need for increased coordination across the research community and with industry, to encourage consistency and collaboration as we work toward answers.”

First, What Do We Mean When We Talk About Hybrid Systems? NREL Proposes a Taxonomy To Delineate What Makes a System a True Hybrid

Finding answers starts with speaking the same language. To help researchers move toward a shared vocabulary around systems that link renewable energy and storage technologies, Murphy and fellow NREL analysts Anna Schleifer and Kelly Eurek published a paper proposing a new taxonomy.

Schematic showing several proposed technology combinations for hybrid energy systems. NREL’s literature review identified several proposed technology combinations. Blue nodes represent variable renewable energy (VRE) technologies, green nodes represent energy storage technology types, and orange nodes represent less-variable renewable energy (RE) technologies or systems; arcs indicate technology pairs that have been proposed in the literature. PV: photovoltaic; RoR: run-of-river; HESS: hybrid energy storage system; CSP + TES: concentrating solar power with thermal energy storage; the Mechanical storage icon encompasses compressed air energy storage and flywheels, both of which ultimately convert the stored energy to electricity. Source: “A Taxonomy of Systems that Combine Utility-Scale Renewable Energy and Energy Storage Technologies

“Our ability to quantify hybrids’ potential impacts could be hindered by inconsistent treatment of these systems, as well as an incomplete understanding of which aspects of hybridization will have the greatest influence,” Murphy said. “Ultimately, we hope our proposed taxonomy will encourage consistency in how the energy community thinks about and evaluates hybrids’ costs, values, and potential.”

After a thorough literature review, the team developed a new organization scheme for utility-scale systems that combine renewable and energy storage technologies — only a subset of which can truly be called “hybrids.” They came up with three categories based on whether the systems involve locational or operational linkages, or both.

“We found that technology combinations do not represent a meaningful delineation between hybrids and non-hybrids — the nature of the linkages are more important distinctions,” Murphy said.

The resulting categories can help inform policy considerations, as they define system characteristics that could challenge existing permitting, siting, interconnection process, and policy implementations. The taxonomy is also helpful in informing model development efforts, as the categories identify the unique characteristics that must be reflected to adequately represent hybrid systems in a model — including the effects of the linkages on both a project’s costs and the values it can deliver to the grid.

That is where NREL’s next set of analyses comes in.

In a series of recent reports, NREL analysts homed in on a set of technology combinations and linkages that are consistent with a true hybrid system — co-optimizing the design and self-scheduling of linked technologies to maximize net economic benefits.

To do this, NREL modeled hybrid systems using three different tools that underpin many of the laboratory’s forward-looking power system studies. These analyses focus on DC-coupled solar photovoltaic and battery energy storage (PV+battery) hybrids, which are increasingly being proposed for the power system.

Can We Improve How Capacity Expansion Models Assess the Value of PV+Battery Hybrids? “Signs Point to Yes.”

Combining PV and battery technologies into a single hybrid system could lower costs and increase energy output relative to separate systems — but accurately assessing PV+battery systems’ market potential requires improved methods for estimating the cost and value contribution in capacity expansion models, including those that utilities use for integrated resource planning.

In Representing DC-Coupled PV+Battery Hybrids in a Capacity Expansion Model, Eurek, Murphy, and Schleifer teamed up with fellow NREL analysts Wesley Cole, Will Frazier, and Patrick Brown to demonstrate a new method for incorporating PV+battery systems in NREL’s publicly available Regional Energy Deployment System (ReEDS) capacity expansion model.

“The method leverages ReEDS’ existing treatment of separate PV and battery technologies, so the focus is on capturing the interactions between them for a hybrid with a shared bidirectional inverter,” Eurek said. “While we apply this method to ReEDS, we anticipate that our approach can be useful for informing PV+battery method development in other capacity expansion models.”

The research team used the method to explore a range of scenarios for the United States through 2050, using different cost assumptions that are uncertain and expected to influence how competitive PV+battery hybrids will be. These include the cost of hybrid systems relative to separate PV and battery projects, the battery component’s qualification for the solar investment tax credit (ITC), and future cost trajectories for PV and battery systems.

“From the full suite of scenarios, we find that the future deployment of utility-scale PV+battery hybrids depends strongly on the level of cost savings that can be achieved through hybridization. So, greater sharing of balance-of-system costs, reductions in financial risk, or modularity can all lead to greater PV+battery hybrid deployment,” Eurek said. “Deployment is also highly sensitive to the battery component’s ability to arbitrage, based on charging from the grid when prices are low and selling back to the grid when prices are high.”

In all scenarios explored, the synergistic value in a PV+battery hybrid helps it capture a greater share of generation, which primarily displaces separate PV and battery projects. In other words, the model results indicate that there is strong competition between PV+battery hybrids and separate PV and battery deployments — although it is important to note that the modeling does not reflect the faster and simpler interconnection process for hybrid projects, which could shift the competition with other resource types as well. In addition, if the PV+battery hybrid is designed and operated to ensure the battery component can qualify for the solar ITC, that could accelerate near-term deployment of PV+battery hybrids.

The team notes several ways in which future PV+battery system modeling could be improved — regardless of which capacity expansion model is used. A top priority is improving the representation of the battery component, including operations-dependent degradation — which may be distinct for hybrid versus standalone battery systems — and temporary operational restrictions associated with its qualification for the solar ITC. In addition, modeling retrofits of existing PV systems to add batteries may be especially important, since this is often considered one of the fastest ways to get PV+battery hybrids onto the grid.

What About Hybrids’ System-Level Operational Benefits? “Outlook Good.”

The operation and value of PV+battery hybrids have been extensively studied from the perspective of project developers through analyses that maximize plant-level revenue. But hybrid systems’ operational characteristics have rarely been studied from the perspective of grid operators, who work to maintain reliability and maximize affordability by optimizing the performance of a suite of generation and storage assets.

In Evaluating Utility-Scale PV-Battery Hybrids in an Operational Model for the Bulk Power System, NREL analysts Venkat Durvasulu, Murphy, and Denholm present a new approach for representing and evaluating PV+battery hybrids in the PLEXOS production cost model, which can be used to optimize the operational dispatch of generation and storage capacity to meet load across the U.S. bulk power system.

Production cost models are an important tool used by utilities and other power system planners to analyze the reliability, affordability, and sustainability associated with proposed resource plans. Here, NREL demonstrated a technique to enhance a production cost model to represent the operational synergies of PV+battery hybrids.

“We used a test system developed for NREL’s recent Los Angeles 100% Renewable Energy Study — replacing existing PV and battery generators on this modeled system with PV+battery hybrids,” Denholm said.

The research team analyzed different scenarios that were designed to isolate the various drivers of operational strategies for PV+battery hybrids — including how the technologies are coupled, the overall PV penetration on the system, and different inverter loading ratios (or degrees of over-sizing the PV array relative to its interconnection limit).

Results show multiple system-level benefits, as the growing availability of PV energy with increasing inverter loading ratio resulted in increased utilization of the inverter (i.e., resulting in a higher capacity factor), a reduction in grid charging (in favor of charging from the local PV, which is more efficient), and a decrease in system-wide production cost.

This chart shows the destination of all PV direct-current (DC) energy collected over the course of a year for simulated PV+battery hybrids as a function of inverter load ratio (ILR). In addition to demonstrating the growing availability of PV DC energy with increasing ILR, the breakdown of utilized PV DC energy indicates that most is sent directly to the grid and 15%–25% is used to charge the local battery. AC = alternating current. Source: Evaluating Utility-Scale PV-Battery Hybrids in Operational Models for the Bulk Power System

“The approach we present here can be used in any production cost modeling study of PV+battery hybrids as a resource in different power system configurations and services,” Durvasulu said. “This is a critical step toward being able to evaluate the system-level benefits these hybrids can provide, and improving our understanding of how a grid operator might call on and use such systems.”

How Could the Value of Hybrids Evolve Over Time? “Reply Hazy, Try Again.”

The third report in the series brings yet another modeling method to the table: price-taker modeling, which quantifies the value that can be realized by PV+battery systems — and explores how this value varies across multiple dimensions.

In “The Evolving Energy and Capacity Values of Utility-Scale PV-Plus-Battery Hybrid System Architectures,” Schleifer, Murphy, Cole, and Denholm explore how the value of PV+battery hybrids could evolve over time — with highly varied results.

Using a price-taker model with synthetic hourly electricity prices from now to 2050 (based on outputs from the ReEDS and PLEXOS models), NREL simulated the revenue-maximizing dispatch of three PV+battery architectures in three locations. The architectures vary in terms of whether the PV+battery systems have separate inverters or a shared inverter and whether the battery can charge from the grid. The locations vary in terms of the quality of the solar resource and the grid mix, both of which influence the potential value of PV+battery hybrids.

“We found that the highest-value architecture today varies largely based on PV penetration and peak-price periods, including when they occur and how extreme they are,” Schleifer said. “Across all the systems we studied, we found that hybridization could either improve or hurt project economics. And no single architecture was the clear winner — in some cases, you want to take advantage of a shared inverter, and in other cases, separate inverters and grid charging are too valuable to give up.”

The results of this price-taker analysis show that a primary benefit of coupling the studied technologies is reduced costs from shared equipment, materials, labor, and infrastructure. But in the absence of oversizing the PV array, hybridization does not offer more value than separate PV and battery systems. In fact, hybridization can actually reduce value if the systems are not appropriately configured — which means appropriately sizing and coupling the battery and likely oversizing the PV array relative to the inverter or interconnection limit.

Another important finding is that both subcomponents stand to benefit from hybridization. As PV penetration grows, the additional energy and capacity value of a new PV system declines rapidly — but coupling the PV with battery storage helps to maintain the value of PV by allowing it to be shifted to periods where the system can provide greater value. In addition, coupled PV can help increase the total revenue of the battery by displacing grid-charged energy, which typically has non-zero cost.

“As the role of PV+battery hybrids on the bulk power system continues to grow, it will be increasingly important to understand the impact of design parameters on economic performance,” Schleifer said. “Additional analysis is needed to tease out the factors that impact the performance and economics of PV+battery hybrid systems — and give system planners and researchers clearer answers about their possible benefits.”

Working Toward “Without a Doubt:” A Call for Coordination To Resolve the Remaining Unknowns

Looking at this collection of work, one thing is clear: No current model is an accurate Magic 8-Ball for predicting hybrids’ future value — but coordinated efforts to improve our models can bring the research community a step closer to a clear outlook.

And momentum is building: The U.S. Department of Energy (DOE) has convened the DOE Hybrids Task Force — which worked with NREL, Lawrence Berkeley National Laboratory, and seven other national laboratories to develop the recently released Hybrid Energy Systems: Opportunities for Coordinated Research, which highlights innovative opportunities to spur joint research on hybrid energy systems in three research areas. That effort touches on the PV+battery hybrids described in this article, and it also considers additional technology combinations that could have a growing role in the future, including PV+windnuclear+electrolysis, and other low-emitting hybrid systems.

“While the power system was originally developed as single-technology plants, and many of our research efforts have been siloed to individual technologies, the DOE Hybrid Task Force represents a step toward collaboration,” Murphy said. “We were able to identify several high-priority research opportunities that span multiple technologies, establish common priorities, and lay a foundation for further dialogue.”

In the days ahead, NREL is uniquely poised to further the validation of hybrid system performance and operation with the Advanced Research on Integrated Energy Systems (ARIES) research platform. ARIES introduces both a physical and a near-real-world virtual emulation environment with high-fidelity, physics-based, real-time models that facilitate the connection between hundreds of real hardware devices and tens of millions of simulated devices.

Integrated energy pathways modernizes our grid to support a broad selection of generation types, encourages consumer participation, and expands our options for transportation electrification.

Ultimately, advancing hybrid systems research at NREL and other national laboratories will require more coordination with industry. The DOE Hybrids Task Force report identified the need for a multistakeholder workshop to take a deep dive into what is motivating different stakeholders to propose and deploy different types of hybrid systems.

“By creating opportunities to directly solicit insights from industry, utility planners, and other stakeholders, we can move toward a deeper understanding of what sources of value are driving industry interest in hybrids,” Murphy said. “Is there inherent value that can only be unlocked through hybridization, or is some of the value embedded in the familiar? By adding storage to variable resources, we can make them look and participate more like the controllable resources we are used to having on the power system.

“Bringing the key players together will help us as researchers to recognize these motivations — some of which we might not currently understand — and close the gap in how to represent them in our models.”

Learn more about NREL’s energy analysis and grid modernization research.

Article courtesy of the NREL, the U.S. Department of Energy

Featured photo by Ramón Salinero on Unsplash


Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Juiced Bikes brand to be revived after surprise purchase by pair of e-bike icons

Published

on

By

Juiced Bikes brand to be revived after surprise purchase by pair of e-bike icons

Last year we reported on the storied e-bike brand Juiced Bikes falling on hard financial times and eventually closing down. Now, in a video announcement just posted to the seemingly defunct Juiced Bikes YouTube channel, the charismatic young founders of Lectric Ebikes have announced their purchase of Juiced Bikes along with their intention to revive the brand to its former glory.

Juiced Bikes was founded in 2009, making it one of the first major electric bicycle brands in the US. Operating continuously until its closure in 2024, its decade and a half of high-performance electric bicycle building created a massive fan base and a reputation for pushing the industry towards power and speed built around innovative designs instead of mere cookie-cutter copycats.

In a candid video posted to the brand’s previously abandoned YouTube channel, Lectric Ebikes founders Levi Conlow and Robbie Deziel openly shared several details about their lengthy bid to purchase Juiced Bikes and their plans to revive the company.

Now to achieve their goal, the pair will have to rely on the lessons they learned in building their own brand, Lectric Ebikes, into the largest electric bicycle company in North America.

Advertisement – scroll for more content

Founded in 2009, Juiced Bikes was the epitome of old school in the e-bike industry. On the other hand, Lectric Ebikes and its two charismatic “e-bike bro” founders are the full embodiment of young e-bike whipper snappers. But despite bursting onto the scene relatively recently in 2019, Lectric Ebikes rocketed past hundreds of other e-bike brands to snatch the title of most annual e-bike sales by 2023. Clenching the title again in 2024 and likely on track for a three-peat in 2025, Levi and Robbie obviously know a thing or two about building up a successful e-bike company.

Lectric has now become known as the go-to source for the best bang-for-your-buck electric bikes, from folding e-bikes to off-road adventure-style rides, cargo e-bikes, and more. But despite Lectric Ebikes’ success, it doesn’t look like its founders intend to merely bring Juiced Bikes into the Lectric family. Instead, the duo seems to be focused on reviving the brand as it is – or at least as it was.

“What drew us into Juiced is the same thing that drew many Juiced customers into the brand in the first place,” explained Levi Conlow, CEO of Lectric Ebikes. “That high performance, that torque, that acceleration, the thing you love about Juiced. That is our full intention, to preserve and continue that beautiful performance into the future, and carry Juiced into its next 15 years. It’s had this hiccup now, but I hope that everyone has seen what we’ve done with Lectric Ebikes and has a great level of confidence in what we’re going to do.”

juiced jetcurrent pro

As Robbie and Levi explained, the process of purchasing the Juiced Bikes brand and attempting to revive it was a long and complicated journey that still seems to be taking shape. Lectric originally placed a winning bid when the brand’s assets were put up at auction in an attempt to pay back Juiced Bikes’ creditors, but the winning bid was rejected, leaving Juiced’s future in limbo. As Levi detailed, eventually he and Robbie were able to salvage a deal where they purchased nearly all of Juiced’s assets outside of its physical inventory. That means the branding, the website, the intellectual property, and pretty much everything else that was once part of the Juiced Bikes company… other than the bikes that used to line the shipping department of its Chinese factory.

And while the pair didn’t explicitly say it, we’ve since seen much of Juiced’s inventory siphoned off by a Chinese-backed e-bike brand called VeloWave, which has been selling it seemingly dropshipped online, so it doesn’t take a lot of internet sleuthing to see why they couldn’t get everything at once.

That means there’s a lot of hard work ahead of Levi and Robbie to rebuild supplier relationships and get bikes moving again. There’s also a number of disappointed Juiced customers who had placed orders for e-bikes just before Juiced collapsed last year and never received them. Levi explained that the company had hoped to fulfill those orders, and may still be able to help those customers out, but that it would take some time to get things moving again.

But while they admit that they may not be able to immediately help many of the frustrated customers or support the larger Juiced Bikes owner community with spare parts until they can build up some inventory, they appear focused on bringing the same commitment to customer service and support to Juiced that they’ve built at Lectric Ebikes.

This is of course still a developing story and we’ll be learning more soon about the backstory to Lectric’s purchase of the Juiced Bikes brand and their plans to return Juiced to its heyday. If you have questions, put them in the comments below and we’ll be sure to find out more when we sit down with Robbie and Levi soon.

Electrek’s Take

This is fascinating. We all thought that there was a chance Juiced Bikes could be saved, but it was a long shot. It meant finding someone who could convince investors that there was still hope, and not that many still saw the hope. But if there ever was, it’s with Levi and Robbie. These guys built the modern-day equivalent of a garage startup into the biggest e-bike company on the continent and almost single-handedly brought previous titans of the industry to their knees. Yet instead of merely forcing other e-bike brands out, here they are trying to save them.

And what I love about this is that it comes from a place of genuine love for the game. If you watch the video above (which you should), you can see Levi and Robbie nerding out about how great Juiced Bikes’ e-bikes were. And they’re right. Those were awesome bikes. Saving the company isn’t just about offering another revenue stream in the high-performance market that Lectric hasn’t previously focused on, but also saving an important part of the history of the nascent American e-bike market. Juiced Bikes WAS the American e-bike market for a long time, back when it was basically just those guys and Pedego… and a few weird chainstay-mounted brush motor e-bikes that looked like they had toaster-shaped batteries strapped to their rear racks.

All of this is to say that this is a really cool story, one that is currently being written, and for which we likely won’t really know how well it will work for many months to come. But damn, am I here for the ride!

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

BYD’s new ‘high-tech trendy’ electric SUV starts at under $20,000: Meet the Tai 3

Published

on

By

BYD's new 'high-tech trendy' electric SUV starts at under ,000: Meet the Tai 3

It’s about the size of a Tesla Model Y, loaded with technology, and designed as a midsize family mover — Meet BYD’s new Tai 3 electric SUV. The Tai 3 is the most affordable EV from BYD’s luxury off-road brand, Fang Cheng Bao, starting at under $20,000.

Meet BYD’s new Fang Cheng Bao Tai 3 electric SUV

BYD’s Fang Cheng Bao brand opened pre-sales for the Tai 3 on Monday, a “high-tech trendy” electric SUV built for families.

Starting at 139,800 yuan, or about $19,300, the Tai 3 is the cheapest vehicle under the sub-brand. Unlike other Fang Cheng Bao brand models, the new electric SUV is designed as a family vehicle rather than a hardcore luxury off-roader.

The five-seater is 4,605 mm long, 1,900 mm wide, and 1,720 mm tall, or around the size of Tesla’s Model Y (4,790 mm long, 1,982 mm wide, and 1,624 mm tall).

Advertisement – scroll for more content

All versions are rated with a CLTC driving range of up to 501 km (311 miles). It’s available in single (RWD) and dual-motor (4WD) versions.

A 72.96 kWh battery powers the base RWD Intelligent Driving Pro Edition, while the flagship “Drone” Version has a 78.72 kWh battery. And yes, it actually comes with BYD’s Ling Yuan drone system, complete with a roof docking station.

BYD-Tai-3-electric-SUV
BYD Fang Cheng Bao Tai 3 electric SUV (Source: Fang Cheng Bao)

For under $20,000, the Tai 3 is packed with tech and cool features. The interior features wing-style instrument display, 15.6″ infotainment, and “Chariot gear lever” crystal buttons. It even has a built-in refrigerator.

A multifunctional smart island includes charging on top, storage on the bottom, lighting on the left, and on the right… passengers get karaoke.

The AI smart cockpit features BYD’s “God’s Eye” C driver-assist system for smart functions like highway navigate on autopilot, remote control parking, and more.

The Tai 3 is available in five variants, with prices ranging up to 203,800 yuan ($28,000) for the Drone version. That’s not bad for an electric SUV with a roof-mounted drone system. Deliveries are expected to begin in April.

BYD Tai 3 trim Pre-sale price
501 km RWD Intelligent Driving Pro 139,800 yuan ($19,300)
501 km RWD Intelligent Driving Max 149,800 yuan ($20,700)
501 km 4WD Intelligent Driving Max 163,800 yuan ($22,600)
501 km 4WD Intelligent Driving Ultra 173,800 yaun ($24,000)
501 km 4WD Drone Version 203,800 yaun ($28,000)
BYD Fang Cheng Bao Tai 3 electric SUV pre-sale price by trim

BYD’s new model kicks off a new “Tai” series under its Fang Cheng Bao brand. It follows the Bao 5 and Bao 8, both hybrid SUVs.

What do you think of the Tai 3? Would you buy one for under $20,000? Let us know what you think of it in the comments.

Source: CnEVPost, Fang Cheng Bao

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Tesla Cybertruck split in half in crash with G Wagon

Published

on

By

Tesla Cybertruck split in half in crash with G Wagon

A Tesla Cybertruck was split in half after another vehicle crashed into it in Frisco, Texas, a few days ago. Images of the aftermath are impressive.

On Friday, the driver of a Mercedes-Benz G Wagon lost control and crashed into seven vehicles parked on the side of the road.

The G Wagon driver was taken to the hospital in an unknown condition. He is believed to have had a medical emergency, which led to the loss of control. He was the only one injured, as no one was in the parked vehicles.

The accident is getting some attention for the aftermath.

Advertisement – scroll for more content

It looks like the first vehicle hit by the driver was a Tesla Cybertruck, and it appears to have been cleanly cut in half at the bed from the impact:

At short of 6,000 lbs, a G Wagon is undoubtedly heavy, and it’s not clear at what speed it was going at the time of the impact.

There’s no doubt that it had a significant impact, but it is still surprising to see the Cybertruck’s bed ripped straight off the truck’s frame.

Some are pointing to Tesla’s use of aluminum in the Cybertruck’s frame.

Despite Tesla’s claim that the Cybertruck is “bulletproof” and made out of an “exoskeleton,” the electric vehicle’s build is actually much closer to a traditional unibody system rather than an “exoskeleton.” Most of the visible body parts, which would be part of the chassis in an exoskeleton build, are actually trims attached to the body.

Furthermore, while Tesla touts its “ultra-hard stainless steel exoskeleton,” it mostly uses stainless steel on external parts, while many parts of the frame are made of aluminum.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending