Fusion took a key step forward in its movement from the lab to commercial viability with the successful test of a key technology — a very powerful magnet that uses very little energy.
In the test, the magnet reached 20 tesla, which is a unit of measurement showing the strength of a magnet. (Like the car company, it’s named after the engineer Nikola Tesla.) For reference, 20 tesla is 12 times more than the magnetic field of a traditional MRI, or magnetic resonance imaging scan.
It did this while consuming only about 30 watts of energy — several orders of magnitude less than the traditional copper-conducting magnet that MIT had tested previously, which used 200 million watts, said Dennis Whyte, Director of MIT’s PSFC and a co-founder of CFS, on a conference call with reporters on Wednesday.
Nuclear fusion is the reaction that powers the sun and the stars. It occurs when two smaller, lighter nuclei merge together to form a single heavier nucleus, releasing energy.
If fusion can be achieved on earth and commercialized, it will provide a nearly unlimited source of clean energy without producing the waste of nuclear fission, which can remain radioactive for thousands of years.
In a donut-shaped fusion machine, called a tokamak, magnets hold and insulate burning plasma for nuclear fusion reactions to occur.
The new magnet from CFS and MIT is strong enough that when the team builds a its donut-shaped fusion machine, called a tokamak, with these magnets, it will be able to achieve “net energy,” meaning that the fusion machine makes more energy that it takes to initiate and sustain the reaction, CFS and MIT’s PSFC said.
So far, no company has been able to achieve net energy fusion. So far, all of the energy created by fusion reactions is usurped in initiating and sustaining the reaction.
“Nobody — no companies, universities, national labs, or governments — have achieved the goal of break-even fusion to date,” Andrew Holland,Chief Executive Officer of the Fusion Industry Association, told CNBC.
The scientists and engineers at CFS and MIT’s PSFC said the successful performance of their new magnet technology is a key step in their technological development of commercialized fusion.
“This magnet will change the trajectory of both fusion science and energy, and we think eventually the world’s energy landscape,” said Whyte.
The performance of these magnets give Holland confidence that CFS and MIT’s PSFC will be able to achieve the goal of commercialized fusion. “Its a big deal,” Holland told CNBC.
“This is not hype, this is reality. With advances from across the fusion industry, we’re seeing a new, clean, sustainable, always available energy source being born,” Holland said.
Team members from CFS and MIT here are lowering the superconducting magnet into the test stand.
Credit: Gretchen Ertl, CFS/MIT-PSFC, 2021
To build the magnets that are able to reach 20 tesla in their experiment on Sunday, CFS and MIT used high temperature superconductors.
“The scale and performance of this magnet is similar to a non-superconducting magnet that was used in the MIT experiment that concluded its experiments five years ago,” Whyte said. But “the difference in terms of energy consumption is rather stunning.”
The high temperature superconducting magnet demonstrated on Sunday will be used in its test fusion device, called SPARC, which is already under construction in Devens, Mass., and is and on track to demonstrate net energy from fusion by 2025, the teams said.
Its first fusion power plant, called ARC, is slated to be online by the early 2030’s.
SPARC is “not a commercial system in the sense that you can rely on it for 30 years to sit there and pump out electricity to people who if it’s not running, their lights go out,” Bob Mumgaard, the CEO of CFS, said on a conference call with reporters on Wednesday.
The difference between SPARC and ARC (which are not acronyms so technically they don’t stand for anything) is “the reliability and the lifetime,” Mumgaard said. First you build a test plane, and then the passenger plane, Mumgaard said.
SPARC “is doing most of the things that the passenger plane is doing, but not quite all of them,” Mumgaard said. “It’s doing it in a way that’s flexible, that we can try out, that we can we can break and fix it … so that we develop the technologies and supply chains that you need to build the next one.”
This week on Electrek’s Wheel-E podcast, we discuss the most popular news stories from the world of electric bikes and other nontraditional electric vehicles. This time, that includes the launch of the Lectric XP4 e-bike, a new set of RadRunners from Rad Power Bikes, California’s e-bike voucher program hits more hurdles, the effect of Trump tariffs on several e-bike and e-moto companies, and more.
The Wheel-E podcast returns every two weeks on Electrek’s YouTube channel, Facebook, Linkedin, and Twitter.
As a reminder, we’ll have an accompanying post, like this one, on the site with an embedded link to the live stream. Head to the YouTube channel to get your questions and comments in.
After the show ends, the video will be archived on YouTube and the audio on all your favorite podcast apps:
We also have a Patreon if you want to help us to avoid more ads and invest more in our content. We have some awesome gifts for our Patreons and more coming.
Here are a few of the articles that we will discuss during the Wheel-E podcast today:
Here’s the live stream for today’s episode starting at 8:00 a.m. ET (or the video after 9:00 a.m. ET):
FTC: We use income earning auto affiliate links.More.
Last month’s bauma event in Germany was so big that the industry hive mind is still trying to digest everything it saw – and that includes these new, rough terrain electric material handlers from Spanish equipment brand AUSA!
AUSA calls itself, “the global manufacturer of compact all-terrain machines for the transportation and handling of material,” and backs that claim up by delivering more than 12,000 units to customers each year. Now, the company hopes to add to that number with the launch of the C151E rough-terrain electric forklift, which takes its rightful place alongside AUSA’s electric telehandler and 101/151 lines of mini dumpers.
The C151 features a 15.5 kWh li-ion battery pack good for “one intense shift” worth of work, sending electrons to a 19.5 kW (approx. 25 hp) electric motor and the associated forks, tilt cylinders, etc. Charging is through a “standard” CCS L1/2 AC port, which can recharge the big electric forklift to 80% in about 2.5 hours.
Looked at another way: even if you drive the battery to nearly nothing, the AUSA can be charged up during a lunch break or shift change and ready to work again as soon as you reach for it.
Advertisement – scroll for more content
AUSA electric forklift charging
The 6,040 lb. (empty) AUSA C151E has a 3,000-pound maximum load capacity and a maximum lift height just over 13 feet.
“It is an ideal tool for working in emission-free spaces such as greenhouses, municipal night works, enclosed spaces, etc.,” reads AUSA’s press material. “It can be used in more applications than a traditional rough terrain forklift, offering greater performance as a result.”
Electrek’s Take
AUSA C151E electric rough terrain forklift; via AUSA.
AUSA’s messaging is spot-on here: because you can use the C151E – in fact, any electric equipment asset – is a broader set of environments and circumstances than a diesel asset, you can earn more work, get a higher utilization rate, and maximize not only your fuel savings, but generate income you couldn’t generate without it.
“More, more, and more” is how a smart fleet operator is looking at battery power right now, and that’s the angle, not the “messy middle,” that the industry needs to be talking about.
Plant workers drive along an aluminum potline at Century Aluminum Company’s Hawesville plant in Hawesville, Ky. on Wednesday, May 10, 2017. (Photo by Luke Sharrett /For The Washington Post via Getty Images)
Aluminum
The Washington Post | The Washington Post | Getty Images
Sweeping tariffs on imported aluminum imposed by U.S. President Donald Trump are succeeding in reshaping global trade flows and inflating costs for American consumers, but are falling short of their primary goal: to revive domestic aluminum production.
Instead, rising costs, particularly skyrocketing electricity prices in the U.S. relative to global competitors, are leading to smelter closures rather than restarts.
The impact of aluminum tariffs at 25% is starkly visible in the physical aluminum market. While benchmark aluminum prices on the London Metal Exchange provide a global reference, the actual cost of acquiring the metal involves regional delivery premiums.
This premium now largely reflects the tariff cost itself.
In stark contrast, European premiums were noted by JPMorgan analysts as being over 30% lower year-to-date, creating a significant divergence driven directly by U.S. trade policy.
This cost will ultimately be borne by downstream users, according to Trond Olaf Christophersen, the chief financial officer of Norway-based Hydro, one of the world’s largest aluminum producers. The company was formerly known as Norsk Hydro.
“It’s very likely that this will end up as higher prices for U.S. consumers,” Christophersen told CNBC, noting the tariff cost is a “pass-through.” Shares of Hydro have collapsed by around 17% since tariffs were imposed.
Stock Chart IconStock chart icon
The downstream impact of the tariffs is already being felt by Thule Group, a Hydro customer that makes cargo boxes fitted atop cars. The company said it’ll raise prices by about 10% even though it manufactures the majority of the goods sold in the U.S locally, as prices of raw materials, such as steel and aluminum, have shot up.
But while tariffs are effectively leading to prices rise in the U.S., they haven’t spurred a revival in domestic smelting, the energy-intensive process of producing primary aluminum.
The primary barrier remains the lack of access to competitively priced, long-term power, according to the industry.
“Energy costs are a significant factor in the overall production cost of a smelter,” said Ami Shivkar, principal analyst of aluminum markets at analytics firm Wood Mackenzie. “High energy costs plague the US aluminium industry, forcing cutbacks and closures.”
“Canadian, Norwegian, and Middle Eastern aluminium smelters typically secure long-term energy contracts or operate captive power generation facilities. US smelter capacity, however, largely relies on short-term power contracts, placing it at a disadvantage,” Shivkar added, noting that energy costs for U.S. aluminum smelters were about $550 per tonne compared to $290 per tonne for Canadian smelters.
Recent events involving major U.S. producers underscore this power vulnerability.
In March 2023, Alcoa Corp announced the permanent closure of its 279,000 metric ton Intalco smelter, which had been idle since 2020. Alcoa said that the facility “cannot be competitive for the long-term,” partly because it “lacks access to competitively priced power.”
Century stated the power cost required to run the facility had “more than tripled the historical average in a very short period,” necessitating a curtailment expected to last nine to twelve months until prices normalized.
The industry has also not had a respite as demand for electricity from non-industrial sources has risen in recent years.
Hydro’s Christophersen pointed to the artificial intelligence boom and the proliferation of data centers as new competitors for power. He suggested that new energy production capacity in the U.S., from nuclear, wind or solar, is being rapidly consumed by the tech sector.
“The tech sector, they have a much higher ability to pay than the aluminium industry,” he said, noting the high double-digit margins of the tech sector compared to the often low single-digit margins at aluminum producers. Hydro reported an 8.3% profit margin in the first quarter of 2025, an increase from the 3.5% it reported for the previous quarter, according to Factset data.
“Our view, and for us to build a smelter [in the U.S.], we would need cheap power. We don’t see the possibility in the current market to get that,” the CFO added. “The lack of competitive power is the reason why we don’t think that would be interesting for us.”
While failing to ignite domestic primary production, the tariffs are undeniably causing what Christophersen termed a “reshuffling of trade flows.”
When U.S. market access becomes more costly or restricted, metal flows to other destinations.
Christophersen described a brief period when exceptionally high U.S. tariffs on Canadian aluminum — 25% additional tariffs on top of the aluminum-specific tariffs — made exporting to Europe temporarily more attractive for Canadian producers. Consequently, more European metals would have made their way into the U.S. market to make up for the demand gap vacated by Canadian aluminum.
The price impact has even extended to domestic scrap metal prices, which have adjusted upwards in line with the tariff-inflated Midwest premium.
Hydro, also the world’s largest aluminum extruder, utilizes both domestic scrap and imported Canadian primary metal in its U.S. operations. The company makes products such as window frames and facades in the country through extrusion, which is the process of pushing aluminum through a die to create a specific shape.
“We are buying U.S. scrap [aluminium]. A local raw material. But still, the scrap prices now include, indirectly, the tariff cost,” Christophersen explained. “We pay the tariff cost in reality, because the scrap price adjusts to the Midwest premium.”
“We are paying the tariff cost, but we quickly pass it on, so it’s exactly the same [for us],” he added.
RBC Capital Markets analysts confirmed this pass-through mechanism for Hydro’s extrusions business, saying “typically higher LME prices and premiums will be passed onto the customer.”
This pass-through has occurred amid broader market headwinds, particularly downstream among Hydro’s customers.
RBC highlighted the “weak spot remains the extrusion divisions” in Hydro’s recent results and noted a guidance downgrade, reflecting sluggish demand in sectors like building and construction.