As American cars and trucks continue to bloat, growing longer and wider decade over decade while roads and parking spaces stay the same size, there may be hope glimmering on the horizon: tiny electric vehicles. I’m not talking about small cars. I’m talking about tiny ones – micro-cars, if you will.
They’re a small but growing category of motor vehicles in the US, and they may just save us from a future of massive, energy-guzzling vehicles that can somehow plow through a playground without noticing yet still struggle to wiggle into a parking spot.
This is Part 1 of a three-part series on these useful little vehicles. In today’s segment, we’ll dive into the “what” and “why” of electric micro-cars.
From the definitions (which have so far eluded most of the industry) to the use cases (which have so far eluded most Americans), we’ll set the stage for what could be the next big wave of tiny cars. In Parts 2 and 3 we’ll cover the legality of such vehicles and the options currently on the road.
What is an electric micro-car?
Let’s start off with a few definitions to set the record straight about these tiny vehicles.
There are three commonly used terms for describing these little runabouts: micro-cars, NEVs (neighborhood electric vehicles), and LSVs (low-speed vehicles). And they’re all wrong in one way or another. Let’s explore each, below.
Low-speed vehicles (LSVs)
The term LSVs is currently the least commonly used term for these, but it’s actually the most correct. That’s because it’s the only legally defined category. LSVs are a federally mandated class of motor vehicles in the US.
They’re more or less equivalent to what are known as “quadricycles” in Europe, with the exception that European quadricycles are allowed to reach speeds of up to 80-100 km/h (50-62 mph), depending on the country, while LSVs in the US are limited to just 25 mph (40 km/h).
The Microlino is a European Quadricycle that reaches speeds far faster than allowed for LSVs in the US
It is a common misunderstanding that all that is required for a vehicle to be considered an LSV is for it to have a maximum speed of 25 mph (40 km/h). In fact, that is only one of many requirements. Federal Motor Vehicle Safety Standards for LSVs have laid out around a dozen standards that mostly cover speed and required safety equipment, but that also include requirements for the manufacturer’s factory to be federally approved by the National Highway Traffic Safety Administration (as well as the factories that produce key components like the auto glass, seat belts and other important components). That’s why it isn’t enough for a small vehicle to simply have seat belts and not exceed 25 mph.
For this reason, it is actually quite difficult for new manufacturers to receive street-legal status for LSVs, though we’ll dive into the legality of these vehicles in much more detail in Part 2 of this series. It’s an important issue since many of the supposed “street legal” LSVs now being offered for sale in the US are far from actually being street legal.
For now though, suffice it to say that LSVs are a federally mandated category of vehicles that are allowed to reach speeds of up to 25 mph (40 km/h) and are allowed to drive on roads with speed limits posted up to 35 mph (56 km/h).
The Wink Sprout above is one of a growing number of street-legal LSVs in the US
LSVs are not required to be electric vehicles, and many low-production-volume combustion engine models have existed over the past two decades, similar to the phenomenon of “kei cars” in Japan. But these days nearly all LSVs in the US are also electric vehicles, largely due to the simplification of manufacturing/maintenance as well as reduced regulatory hurdles associated with emissions testing.
The term LSV is really the only important term for this industry because it is the only one that is clearly defined. That brings us to… NEVs.
Neighborhood electric vehicles (NEVs)
The term NEV is probably the most commonly used term in this industry, which is problematic because it doesn’t mean anything. There is no clearly defined boundary for what makes up an NEV.
The term originated before the LSV category was created by the federal government, and it largely referred to small, slower-moving electric vehicles that were similar in appearance to golf carts, yet were designed for traveling on roads and around neighborhoods instead of across the golf course. The most famous example of an NEV is likely the GEM, which started out under the Chrysler umbrella before moving to Polaris and finally to its current owner, WAEV.
The GEM popularized the concept of an NEV before the US government had created an LSV category, and thus the term NEV stuck.
The problem is that despite everyday usage, there’s no clear line drawn to determine what is and what isn’t an NEV. It’s similar to the word “truck” in its vaguery. Is an F-150 a truck? What about an 18-wheeler semi-trailer? Or a U-Haul? They’re all called trucks in common parlance, yet the Department of Transportation would beg to differ.
The other issue with the term NEV is that it implies a purely neighborhood use for these vehicles. While neighborhood and local community use is a common application, densely populated cities are quickly becoming another major market for these tiny electric vehicles.
An LSV could easily drive from Battery Park on the southern tip of Manhattan up to Washington Heights, a 13-mile (21 km) commute covering dozens of neighborhoods. In fact, I drove an LSV across the Brooklyn Bridge earlier this year as I travelled around NYC, highlighting the urban appeal of such small electric vehicles.
I drove an LSV from Wink Motors across the Brooklyn Bridge on a day trip through NYC
What are micro-cars?
The term micro-car has become something of a catchall. Similarly to NEVs though, there is no clear definition for the term. It is generally used more for fully enclosed LSVs than for open golf cart-style buggies like the GEM vehicles (though GEMs do have optional hard doors that make them fit better into the loosely defined micro-car category).
This door quasi-requirement is likely due to the fact that many people think of micro-cars as looking more like a conventional car, but simply scaled down into a smaller (and often cuter) vehicle.
Micro-cars can be as small as single-seaters or can even fit a family of five. I’ve driven a Chinese micro-car around Florida with my wife and our three nieces and nephews, showcasing the family-friendly nature of electric micro-cars.
Micro-cars, just like NEVs, are not a federally defined class of vehicle, and thus the term is limited largely to everyday language. For legal use, LSV is the only federally defined category of motor vehicle.
Golf carts are perhaps the most commonly understood of all of these categories due to their ubiquitous use on golf courses around the country.
While they can be powered by a combustion engine or by an electric motor, most golf carts produced today are electric.
They generally reach speeds of up to 20 mph (32 km/h), though can often be modified to reach speeds of closer to 30 mph. Some come with seat belts, radios, and other fancier features, but many are bare-bones vehicles designed for basic transportation.
Traditional golf carts are not street legal, though many small communities have created local golf cart ordinances to allow for their use on low-traffic roads.
Several large golf cart manufacturers have begun to produce LSV versions of their carts that have been homologated for street use. These versions, if produced to meet the LSV regulations laid out in the Federal Motor Vehicle Safety Standards, can be used like any other LSV on public roads that have posted speed limits of 35 mph (56 km/h) or less.
Golf carts are generally open-air vehicles that lack doors or locking storage. This is one of their main downsides compared to micro-cars, which generally have locking doors that can provide security as well as an all-weather ride.
Use cases for electric micro-cars and small vehicles
LSVs have two main uses in the US: transportation and utility use.
For transportation, LSVs have several advantages. Many owners prefer their small size that makes them nimbler in traffic and easier to park. They can often even be parked in small spots or psuedo-spots on the edges of parking areas that a traditional car couldn’t fit into.
Their simpler design and smaller size also means that they generally cost much less than a traditional electric car, both to purchase and to charge. Some new LSVs can start at below $10,000, compared to much more expensive electric family cars.
For some people, they’re also more fun to drive due to the novelty and go-kart feel that the small size offers. The 25 mph (40 km/h) top speed can be appropriate in many cities and communities, and the slower pace is often more fun for folks that enjoy cruising around their community and seeing the smiles on faces from onlookers. This is especially true in beach communities, older resident villages, and other planned communities.
My mini-truck may be small but it carries quite a load!
For utility, LSVs can offer many of the same benefits. Electric mini-trucks are becoming more popular in the cargo and delivery fields, especially in crowded cities that can be difficult to navigate with a larger box truck.
These vehicles can often offer similar bed sizes compared to traditional pickup trucks or small flatbed trucks, yet the entire vehicle is much smaller.
The increase in demand for electric mini-trucks has even spawned a new US-produced vehicle known as the AYRO Vanish.
Which LSVs and NEVs are street legal?
Street-legality is perhaps the most important aspect of electric micro-cars, especially as new importers and manufacturers begin to crop up.
We’ll cover this issue in-depth in Part 2 of this series, which will return this Wednesday. Stay tuned!
FTC: We use income earning auto affiliate links.More.
In a high-tech move that we can all get behind and isn’t dystopian at all, the City of Barcelona is feeding camera data from its city buses into an advanced AI, but they swear they’re not using the footage to to issue tickets to bad drivers. Yet.
Barcelona and its Ring Roads Low Emission Zone have earned lots of fans by limiting ICE traffic in the city’s core. The city’s latest idea to promote mass transit is the deployment of an artificial intelligence system developed by Hayden AI for automatic enforcement of reserved lanes and stops to improve bus circulation – but while it seems to be working as intended, it’s raising entirely different questions.
“Bus lanes are designed to help deliver reliable, fast, and convenient public transport service. But private vehicles illegally using bus lanes make this impossible,” explains Laia Bonet, First Deputy Mayor, Area for Urban Planning, Ecological Transition, Urban Services and Housing at the Ajuntament de Barcelona. “We are excited to partner with Hayden AI to learn where these problems occur and how they are impacting our public transport service.”
Currently operating as a pilot program on the city’s H12 and D20 bus lines, the system uses cameras installed on the city’s electric buses to detect vehicles that commit static violations in the bus lanes and stops (read: stopping or parking where you shouldn’t). The Hayden AI system then analyses that data and provides statistical information on what it captures while the bus is driving along on its daily route.
Advertisement – scroll for more content
Hayden AI says that, while it photographs and records video sequences and collects contextual information of the violation, its cameras do not record license plates or people and no penalties are being issued to drivers or owners of the vehicles.
So far so good, right? But it’s what happens once the six mont pilot is over that seems like it should be setting off alarm bells.
Big Brother Bus is watching
“You are being recorded” sign in a bus; via Barcelona City Council.
The footage is manually reviewed by a Transports Metropolitans de Barcelona (TMB) officer, who reportedly reviewed some 2,500 violations identified by AI in May alone. But, while the system isn’t being used to issue violations during the pilot program, it easily could.
And, in fact, it already has … and the AI f@#ked up royally.
AI writes thousands of bad tickets
NYC issued hundreds of thousands of tickets; via NBC.
When AI was given the ability to issue citations in New York City earlier this year, it wrote more than 290,000 tickets (that’s right: two-hundred and ninety thousand) in just three months, generating nearly $21 million in revenue for the city. The was just one problem: thousands of those drivers weren’t doing anything wrong.
What’s more, the photos generated by the AI powered cameras were supposed to be approved only after being verified by a human, but either that didn’t happen, or it did happen and the human operator in question wasn’t paying attention, or (maybe the worst possibility) the violations were mistakes or hallucinations, and the human checker couldn’t tell the difference.
In OpenAI’s tests of its newest o3 and o4-mini reasoning models, the company found the o3 model hallucinated 33% of the time during its PersonQA tests, in which the bot is asked questions about public figures. When asked short fact-based questions in the company’s SimpleQA tests, OpenAI said o3 hallucinated 51% of the time. The o4-mini model fared even worse: It hallucinated 41% of the time during the PersonQA test and 79% of the time in the SimpleQA test, though OpenAI said its worse performance was expected as it is a smaller model designed to be faster. OpenAI’s latest update to ChatGPT, GPT-4.5, hallucinates less than its o3 and o4-mini models. The company said when GPT-4.5 was released in February the model has a hallucination rate of 37.1% for its SimpleQA test.
I don’t know about you guys, but if we had a local traffic cop that got it wrong 33% of the time (at best), I’d be surprised if they kept their job for very long. But AI? AI has a multibillion dollar hype train and armies of undereducated believers talking about singularities and building themselves blonde robots with boobs. And once the AI starts issuing tickets to the AI that’s driving your robotaxi, it can just call its buddy AI the bank to send over your money. No human necessary, at any point, and the economy keeps on humming.
But, like – I’m sure that’s fine. Embrace the future and all that … right?
Your personalized home solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. The best part? You won’t get a single phone call until after you’ve elected to move forward.Get started, hassle-free, by clicking here.
FTC: We use income earning auto affiliate links.More.
A new report from global energy think tank Ember says batteries have officially hit the price point that lets solar power deliver affordable electricity almost every hour of the year in the sunniest parts of the world.
The study looked at hourly solar data from 12 cities and found that in sun-soaked places like Las Vegas, you could pair 6 gigawatts (GW) of solar panels with 17 gigawatt-hours (GWh) of batteries and get a steady 1 GW of power nearly 24/7. The cost? Just $104 per megawatt-hour (MWh) based on average global prices for solar and batteries in 2024. That’s a 22% drop in a year and cheaper than new coal ($118/MWh) and nuclear ($182/MWh) in many regions.
Ember calls it “24/365 solar generation,” and it’s not just a theoretical model. Cities like Muscat, Oman, and Las Vegas can hit that steady power mark for up to 99% of the hours in a year. Hyderabad, Madrid, and Buenos Aires can reach 80–95% of the way there using that same solar-plus-storage setup with some cloud cover. And even cloudier cities like Birmingham in the UK can cover about 62% of hours annually.
“This is a turning point in the clean energy transition,” said Kostantsa Rangelova, global electricity analyst at Ember. “Around-the-clock solar is no longer a distant dream; it’s an economic reality of the world. It unlocks game-changing opportunities for energy-hungry industries like data centres and manufacturing.”
Advertisement – scroll for more content
This is an enormous opportunity for sunny regions in Africa and Latin America. Manufacturers and data centers could also tap into solar-plus-storage and skip long waits (and big bills) for new grid connections.
It’s not a silver bullet for grid-wide reliability, but it lets solar carry much more of the load, especially where sunshine is abundant. Batteries also help avoid costly grid expansions by allowing up to five times more solar to plug into existing connections.
In 2024 alone, global battery prices dropped 40%, which helped drive down solar-plus-storage costs by 22%. Record-low tenders from countries like Saudi Arabia point to even cheaper options coming soon.
Real-world projects are already online: The UAE built the world’s first gigawatt-scale 24-hour solar facility. Arizona is already home to solar-powered data centers. And as battery tech keeps improving, round-the-clock solar could become the backbone of clean energy systems in the world’s sunniest places.
To limit power outages and make your home more resilient, consider going solar with a battery storage system. In order to find a trusted, reliable solar installer near you that offers competitive pricing, check outEnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and you share your phone number with them.
Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get startedhere. –trusted affiliate link*
FTC: We use income earning auto affiliate links.More.
The Honda Prologue continues to surprise, ranking among the top ten most leased vehicles (gas-powered or EV) in the US in the first quarter. It was the only EV, outside of Tesla’s Model Y and Model 3, that made the list.
Honda Prologue EV ranks among most leased vehicles
After launching the Prologue in the US last March, Honda’s electric SUV took off. In the second half of the year, it was the second-best-selling electric SUV, trailing only the Tesla Model Y.
The Prologue remains a top-selling EV in the US this year, with over 13,500 units sold through May. That’s not too bad, considering it only sold 705 through May of last year.
According to a new Experian report (via Automotive News), Honda’s success is being driven by ultra-affordable lease rates. In the first quarter, nearly 60% of new EV buyers in the US chose to lease, up from just 36% a year ago.
Advertisement – scroll for more content
Three EVs ranked in the top ten most leased vehicles, including the Tesla Model Y, Model 3, and Honda Prologue.
2025 Honda Prologue Elite (Source: Honda)
Tesla’s Model Y and Model 3 took the top two spots, while the Honda Prologue ranked number seven. Those who leased Tesla’s Model 3 paid $402 per month, Honda Prologue lessees paid $486 a month.
Given the average loan rate was $708 a month for those who bought it, it’s no wonder nearly 90% chose to lease. Under 9% chose to buy, while less than 2% paid cash.
To give you a better idea, the average monthly payment for a new vehicle lease in the US in the first quarter was $595.
With over $20,000 in discounts, Honda’s luxury Acura brand is selling a surprising number of EVs in the US. The nearly $65,000 Acura ZDX is sold for under $40,000 on average in May, according to Cox Automotive’sEV Market Monitor report for May.
2024 Acura ZDX (Source: Acura
The trend is primarily thanks to the $7,500 federal EV tax credit, which is being passed on to customers through leasing.
With the Trump administration and Senate Republicans aiming to kill off federal subsidies, the savings could soon disappear. If the Senate’s recently proposed bill is passed, the $7,500 credit would expire within 180 days. It would not only make electric vehicles more expensive, but it would also put the US further behind China and others leading the shift to electrification.
2025 Chevy Equinox EV LT (Source: GM)
Some automakers, including GM, are expected to continue offering the incentives. “GM has been very competitive on the incentives on their end, and that is not scheduled to end.”
After outselling Ford, GM’s Chevy is now the fastest-growing EV brand in the US through May. Chevy is starting to chip away at Tesla’s lead, largely thanks to the new Equinox EV, or “America’s most affordable +315 range EV,” as GM calls it.
2025 Chevrolet Equinox EV RS (Source: GM)
According to Xperian, those who leased a new Chevy Equinox EV in Q1 paid $243 less than those who financed it. The electric Equinox stood out in Cox Automotive’s EV Market Monitor report with an average selling price under $40,000, even without incentives.
The Chevy Equinox EV remains one of the most affordable EVs on the market. Starting at just $34,995, the base LT FWD model offers an EPA-estimated range of 319 miles.
Looking to test out some of the most popular EVs for yourself? With Honda Prologue leases as low as $259 per month and Chevy Equinox EV leases starting at just $289 per month, the deals are hard to pass up right now while the incentives are still here. You can use our links below to find models in your area.
FTC: We use income earning auto affiliate links.More.