Connect with us

Published

on

Originally published at ILSR.org

Electricity customers are lining up to generate their own clean, affordable solar energy, but to get it to them, solar developers must navigate the impediments of a congested and outdated electricity grid.

For this episode of the Local Energy Rules podcast, host John Farrell speaks with Yochi Zakai, attorney with Shute, Mahaly, and Weinberger representing Interstate Renewable Energy Council (IREC). The two discuss hosting capacity analysis and how publicly shared grid information can help solar developers, electric customers, and others make more informed decisions.

Listen to the full episode and explore more resources below — including a transcript and summary of the conversation.

Episode Transcript


Expensive Electric Accommodations

Electric distribution grids were built as top-down avenues for delivering electricity from large, centralized power plants. Now, as distributed generation and energy storage become more popular, utilities are having to accommodate the two-way flow of electricity. To do so, the utility often needs to upgrade the distribution system. This is especially true in areas where there is a lot of distributed energy development.

“The grid was built for this one way flow of electricity. But as more customers decide to install generation in their homes, the way that the distribution grid operates is also going to change.”

Solar developers looking to connect their new generation source to the grid may trigger the need for a system upgrade. In most cases, whoever triggers a grid upgrade must pay the upgrade costs — which can be severe. Larger solar gardens are more likely to trigger upgrades. If a developer is surprised by these costs, and building their solar garden is no longer feasible, they may be forced to drop their plans entirely. Hosting capacity analysis can provide key grid information proactively for individuals hoping to plug in.

Hosting Capacity Analysis

In a hosting capacity analysis, utilities compile information about the electric grid and publish it online for the use of developers and other stakeholders. The resulting map has pop-ups with data on various localized grid conditions: how much generating capacity that section of the grid can still handle, the voltage of the line, and the existing generation on that part of the grid.

This information, which Zakai calls “geeky grid data,” helps customers and solar developers make decisions.

“The studies produce a wealth of information that developers can use to cite and design the systems so they don’t trigger upgrades. And in some cases they can even make the grid more reliable.”

Utilities in seven states are required to publish hosting capacity maps. Some utilities even publish this information voluntarily. Zakai says that generally, hosting capacity analysis is most common in states with robust distributed energy development, including Hawaii, Massachusetts, and New York.

Image from Xcel Energy’s Hosting Capacity Map

Some Truth to California Exceptionalism

California’s hosting capacity analysis process, called integration capacity analysis, provides more useful information than the hosting capacity maps published in other states. This is thanks, in part, to a petition from Zakai and the Interstate Renewable Energy Council (IREC). IREC asked the state of California to consider all kinds of interconnecting loads, including electric vehicle chargers, electric heat, and solar generating power, when implementing its integration capacity analysis. In January 2021, the California commission filed its petition to make changes to the analysis and its resulting map.

In California, grid users also uniquely share the cost of grid upgrades, rather than the typical ‘cost-causer pays’ model used in other states.

Automating & Simplifying the Interconnection Process

It is not possible to automate all new grid interconnections, says Zakai. Still, hosting capacity analysis could simplify many of the steps within this process. California is the first state in the country to try using hosting capacity analysis to reduce the complexity of the interconnection process.

“Hosting capacity analysis can be used to automate and increase the precision of some of the most problematic technical review processes that the utilities use when they evaluate new grid connections. Last fall, California became the first state in the country to make a final decision to use the hosting capacity analysis to automate some of these processes.”

Thanks to new rules adopted by the California Public Utilities Commission, solar developers can use the public hosting capacity maps to design and site projects with more certainty. As developers make more informed proposals, utilities will not waste resources reviewing projects that will never get built.


Read ILSR’s comments to the Minnesota Public Utilities Commission detailing how Hosting Capacity Analysis Could Simplify Grid Interconnection for Distributed Energy Resources.


Episode Notes

See these resources for more behind the story:

For concrete examples of how cities can take action toward gaining more control over their clean energy future, explore ILSR’s Community Power Toolkit.

Explore local and state policies and programs that help advance clean energy goals across the country, using ILSR’s interactive Community Power Map.


This is episode 135 of Local Energy Rules, an ILSR podcast with Energy Democracy Director John Farrell, which shares powerful stories of successful local renewable energy and exposes the policy and practical barriers to its expansion.

Local Energy Rules is Produced by ILSR’s John Farrell and Maria McCoy. Audio engineering for this episode is by Drew Birschbach.

This article originally posted at ilsr.org. For timely updates, follow John Farrell on Twitter, our energy work on Facebook, or sign up to get the Energy Democracy weekly update.

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Electricity is about to become the new base currency and China figured it out

Published

on

By

Electricity is about to become the new base currency and China figured it out

For most of human history, currency was a direct claim on tangible, productive output. Before the abstraction of government fiat or cryptocurrency, value was stored in things that required real work and resources, bushels of grain, livestock, gold, assets with their own direct productive output: horses, and tragically, slaves.

These were the foundational assets of economies, representing a direct link between labor, resources, and stored value.

As we accelerate into an all-electric, all-digital age, this fundamental link is re-emerging, but with a new unit of account. The 21st-century economy, defined by automated industry, robotic, electric transport, and now power-hungry artificial intelligence, runs on a single, non-negotiable input: electricity. In this new paradigm, the real base currency, the ultimate representation of productive capacity, is the kilowatt-hour (kWh).

The kWh is the new economic base layer.

Advertisement – scroll for more content

Last week, I was in Bijiashan Park at night overlooking Shenzhen, arguably the most technologically advanced city on earth, built over the previous few decades, partly on cheap electricity, cheap labor, and manufacturing innovations.

I could see the giant high-voltage power lines coming over Yinhu Mountain to power the constant light show that is Shenzhen at night. I couldn’t help but think about how cheap electricity and a strong grid have been critical to China’s exceptional economic rise.

As you stroll around the city, you see power everywhere. There are charging stations at every corner, including insane 1 MW charging posts, electric cars and trucks, trucks that carry batteries to electric scooter shops, which are also literally everywhere.

Everything moves on electric power. Industries are powered by electricity, and now, with the advent of AI, virtually everything is increasingly processed by LLMs, which are ultimately powered by electricity through power-hungry data centers.

In a world where everything runs on electricity, electricity itself becomes the currency of civilization.

It is measurable, divisible, storable, and universal – all qualities that a currency needs, but unlike fiat and crypto, it’s actually directly linked to productive output. No politics. No inflation. Just physics.

This concept is not merely academic; it appears to be the quiet, guiding principle in China. While others debate the merits of decentralized digital tokens, China is executing a multi-pronged strategy that treats electricity as the foundational strategic asset it has become.

First, China is building the “mint” for this new currency at an incredible, world-changing scale, and it has retained absolute state control over its distribution. Its deployment of new electricity generation, particularly from renewables, is staggering. The country met its 2030 target of 1,200 gigawatts of renewable capacity five years early, in 2025.

In 2024 alone, renewable energy accounted for a record 56% of the nation’s total installed capacity, with clean generation meeting 84% of all new demand.

Here’s a comparison of electricity generation between China and the US:

If this chart doesn’t scare the West. I don’t know what will. The trend is not reversing any time soon. In fact, it appears to be accelerating as China is doubling down on solar and nuclear.

State-owned monoliths manage this entire system, primarily the State Grid Corporation of China (SGCC), the world’s largest utility. For better or worse, this centralized control allows the state to execute massive national strategies impossible in a liberalized market, such as building an Ultra-High-Voltage (UHV) grid to transmit power from remote solar and wind farms in the west to the power-hungry industrial hubs on its coast.

Second, China wields its control over the grid as a precision tool of industrial policy. China’s average electricity rate of $0.084/kWh is cheaper than most of the rest of the world, but its power lies not in the base price but in its strategic application. The government deploys a “Differential Electricity Pricing” policy: a “stick” that penalizes low-tech, high-consumption industries with higher rates, and a “carrot” that provides preferential pricing to incentivize strategic sectors.

The most potent example is in the AI sector. China is now offering massive electricity subsidies, cutting power bills by up to half, for data centers run by giants like Alibaba and Tencent. The condition for this cheap power is that these companies must use locally-made, Chinese AI chips, such as those from Huawei.

China is spending its “electricity currency” to directly fund the growth of its domestic AI chip industry and sever its dependence on foreign technology. This same logic applies to its global dominance in green tech, where state-subsidized firms like BYD benefit from a state-controlled industrial ecosystem built on reliable, managed power.

Third, and possibly the most explicit exemplification of China viewing electricity as the base currency is its moves against cryptocurrency.

In 2021, the government banned all cryptocurrency transactions and mining. While the official reasons cited financial stability, the move might have had a deeper, strategic intention.

From the state’s perspective, it was a tool for capital flight, allowing wealth to bypass government controls. But in a world where electricity rules, cryptocurrencies are, in effect, a competing “currency” that burns the foundational asset (electricity) to create a decentralized store of value.

By banning crypto, China simultaneously reclaimed its monopoly on economic control and shut down a massive, “wasteful” leak of its most precious resource. It freed up that generating capacity to be strategically allocated to its preferred industries, like AI and manufacturing.

China’s actions, viewed together, are a clear and coherent strategy. By massively investing in and securing total state control over its domestic electricity supply (the “mint”), using its price as a tool to fuel strategic industries, and banning decentralized competitors that consume the same resource, China is making a clear bet. It has been recognized that in an age where all productivity is powered by the grid, the ultimate source of national power is not gold, fiat, or crypto, but the state-controlled kilowatt-hour.

The Blockchain and Crypto: Ledger vs. Furnace

This perspective brings a critical nuance to the role of blockchain technology. In an economy where electricity is the base currency, the blockchain makes perfect sense, but only as a ledger, not as a store of value.

A distributed ledger is the ideal technological layer to act as the accounting system for this new economy. It can track the generation, transmission, and consumption of every kilowatt-hour with perfect transparency. It can automate complex industrial contracts and manage the grid’s load balancing without a central intermediary. In this sense, blockchain is the “banking software” for the electricity standard.

However, “Proof of Work” cryptocurrencies like Bitcoin face a fatal contradiction within this paradigm. They aim to serve as a store of value by burning the base currency (electricity) to secure the network. If the kilowatt-hour is the 21st-century equivalent of gold, then Bitcoin mining is akin to melting down gold bars to print a paper receipt. It destroys the productive asset to create a derivative token.

Bitcoin is quickly losing credibility as a classical safe store of value. It trades like a security, at least over the last year, and its value is only whatever the next moron is willing to pay, with no valuable asset behind it.

China’s strategy reflects this precise understanding. While they ruthlessly banned Bitcoin mining (the “furnace” that wastes the asset), they have simultaneously championed the Blockchain-based Service Network (BSN) and the Digital Yuan. They have embraced the ledger to track and control their energy economy, while rejecting the supposed asset that destroys it.

This is a trap that crypto fans often fall into. They recognize the value of the blockchain, which is real, but they mistakenly broadly assign the same value to cryptocurrency, which is simply an application of the blockchain.

Electrek’s Take

What I’m trying to explore in this op-ed is the idea that if the present is electric and the future is even more electric, then it makes sense for electricity to be the foundation of the economy.

If electricity is the backbone of global trade and the metric of productivity, the kWh ultimately becomes the real currency of a truly electrified world.

And I think China has figured this out, as evidenced by its new electricity generation surpassing the rest of the world combined and by its ban on cryptocurrency.

They are going to let the rest of the world hold the crypto bag while they have more electricity generation than anyone to power their industries, which are already taking over the world.

I think the rest of the world should learn from this. Instead of pouring capital into meme coins and made-up stores of value, we should invest in electricity generation and storage.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Oil prices and energy stocks fall sharply on Trump’s new Ukraine peace plan

Published

on

By

Oil prices and energy stocks fall sharply on Trump’s new Ukraine peace plan

This aerial picture shows the oil tanker Boracay anchored off the Atlantic Coast off Saint-Nazaire, western France on October 1st, 2025. French authorities said Wednesday they were investigating the oil tanker Boracay anchored off the Atlantic Coast and suspected of being part of Russia’s clandestine “shadow fleet”.

Damien Meyer | Afp | Getty Images

Oil prices extended declines and energy stocks fell sharply on Friday morning as U.S. President Donald Trump pushed for a peace deal to end the long-running Russia-Ukraine war.

International benchmark Brent crude futures with January expiry slipped 2% to $62.09 per barrel at 11:02 a.m. London time (6:02 a.m. ET), after dipping 0.2% in the previous session. The contract is down more 16% so far this year.

U.S. West Texas Intermediate futures with January expiry were last seen 2.4% lower at $57.61, after closing Thursday off 0.5%.

Europe’s Stoxx Oil and Gas index, meanwhile, led losses during morning deals, down more than 2.7%. Britain’s Shell and BP were both trading around 1.6% lower, while Germany’s Siemens Energy fell more than 8%.

U.S. oil giants Exxon Mobil and Chevron were 0.4% and 0.2% lower, respectively, during premarket trade.

The bearish market sentiment comes as investors pore over the details of the Trump administration’s push to secure a peace deal between Russia and Ukraine.

The U.S., under a widely leaked plan, has reportedly proposed that Ukraine cede land including Crimea, Luhansk and Donetsk, and pledge never to join the NATO military alliance.

The plan also says Kyiv will receive “reliable” security guarantees, while the size of the Ukrainian Armed Forces will be limited to 600,000 personnel, according to The Associated Press, which obtained a copy of the draft proposal. CNBC has not been able to independently verify the report.

Analysts were doubtful that the peace plan, which is thought to be favorable toward Russia, would be backed by Ukraine.

Guntram Wolff, senior fellow at Bruegel, a Brussels-based think tank, was among those skeptical about whether the proposed peace plan could lead to a deal.

“I think it’s always good to talk each other so in that sense it’s a good development but I have to say when I saw the details of this supposed peace plan, I really don’t think it can fly,” Wolff told CNBC’s “Europe Early Edition” on Friday.

“Because at the core, what it says is that Ukraine should give up significant parts of its military personnel, meaning the military personnel would decrease by something like a third from 900,000 to 600,000,” he added.

A general view of a PJSC Lukoil Oil Company storage tank at an oil terminal located on the Chaussee de Vilvorde on October 30, 2025 in Brussels, Belgium.

Thierry Monasse | Getty Images News | Getty Images

Alongside the peace plan noise, energy market participants closely monitored the potential impact of U.S. sanctions against Russian oil producers Rosneft and Lukoil, with the measures taking effect from Friday, a stronger U.S. dollar and expectations for the Federal Reserve’s upcoming interest rate decision.

Continue Reading

Environment

Classic Jeep Grand Wagoneer gets a battery electric makeover [video]

Published

on

By

Classic Jeep Grand Wagoneer gets a battery electric makeover [video]

Texas-based tuning firm Vigilante 4×4 is known for its wild, high-horsepower Jeep SJ Hemi restomods – but they’re more than just a hot rod shop. To prove it, they’ve developed a bespoke, all-electric skateboard chassis designed to turn the classic Jeep Grand Wagoneer into a modern, desirable electric SUV.

The scope of the Vigilante 4×4 electric chassis project is truly impressive. More than just a Jeep SJ frame with an electric drive train bolted in, the chassis is a completely fresh design that utilizes precise 3D scans of the original SJ Wagoneers, Grand Wagoneers, and J-Trucks to establish hard points, then fitted with low-slung battery packs to give the electric restomods superior weight balance, a lower center of gravity, and objectively improved ride and handling compared to its classic, ICE-powered forefathers.

The result is a purpose-built platform that delivers power to the wheels through a dual-motor system – one mounted in the front, and one at the rear – to provide a permanent, infinitely variable four-wheel drive system that offers both on-road performance and the kind of off-road capability that made the Grand Wagoneer famous in the first place.

Vigilante 4×4 electric Jeep SJ


“This isn’t a replacement for our Vigilante HEMI offerings,” reads the official copy. “It’s a total revisit of the Vigilante platform under electric power.”

Advertisement – scroll for more content

The company emphasizes that its new chassis is still in the prototype stages. As such, there are no specs, there is no pricing, there are no range estimates. Despite it all, the response from Jeep enthusiasts has already been strong. “Keep in mind this is our first prototype,” a spokesperson said. “There’s still a lot of work to be done – but the journey has begun.”

Electrek’s Take


Electric SJ chassis; Vigilante 4×4.

Retro done wrong – think the Dodge Charger Daytona EV or VW ID.Buzz – is a disaster. Always. If that nostalgic tone is just a little bit off, the song doesn’t work. The heartstrings don’t pull. Done right, however, the siren song of nostalgia will have you putting a second mortgage on your house to put a Singer Porsche or ICON Bronco in your garage.

It’s too soon to tell what side of that line the Vigilante 4×4 Jeep SJ will eventually fall, but one thing (at least) is certain: it’s closer to the mark than that Wagoneer S.

SOURCE | IMAGES: Vigilante 4×4, via Mopar Insiders.


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending