Connect with us

Published

on

Originally published at ILSR.org

Electricity customers are lining up to generate their own clean, affordable solar energy, but to get it to them, solar developers must navigate the impediments of a congested and outdated electricity grid.

For this episode of the Local Energy Rules podcast, host John Farrell speaks with Yochi Zakai, attorney with Shute, Mahaly, and Weinberger representing Interstate Renewable Energy Council (IREC). The two discuss hosting capacity analysis and how publicly shared grid information can help solar developers, electric customers, and others make more informed decisions.

Listen to the full episode and explore more resources below — including a transcript and summary of the conversation.

Episode Transcript


Expensive Electric Accommodations

Electric distribution grids were built as top-down avenues for delivering electricity from large, centralized power plants. Now, as distributed generation and energy storage become more popular, utilities are having to accommodate the two-way flow of electricity. To do so, the utility often needs to upgrade the distribution system. This is especially true in areas where there is a lot of distributed energy development.

“The grid was built for this one way flow of electricity. But as more customers decide to install generation in their homes, the way that the distribution grid operates is also going to change.”

Solar developers looking to connect their new generation source to the grid may trigger the need for a system upgrade. In most cases, whoever triggers a grid upgrade must pay the upgrade costs — which can be severe. Larger solar gardens are more likely to trigger upgrades. If a developer is surprised by these costs, and building their solar garden is no longer feasible, they may be forced to drop their plans entirely. Hosting capacity analysis can provide key grid information proactively for individuals hoping to plug in.

Hosting Capacity Analysis

In a hosting capacity analysis, utilities compile information about the electric grid and publish it online for the use of developers and other stakeholders. The resulting map has pop-ups with data on various localized grid conditions: how much generating capacity that section of the grid can still handle, the voltage of the line, and the existing generation on that part of the grid.

This information, which Zakai calls “geeky grid data,” helps customers and solar developers make decisions.

“The studies produce a wealth of information that developers can use to cite and design the systems so they don’t trigger upgrades. And in some cases they can even make the grid more reliable.”

Utilities in seven states are required to publish hosting capacity maps. Some utilities even publish this information voluntarily. Zakai says that generally, hosting capacity analysis is most common in states with robust distributed energy development, including Hawaii, Massachusetts, and New York.

Image from Xcel Energy’s Hosting Capacity Map

Some Truth to California Exceptionalism

California’s hosting capacity analysis process, called integration capacity analysis, provides more useful information than the hosting capacity maps published in other states. This is thanks, in part, to a petition from Zakai and the Interstate Renewable Energy Council (IREC). IREC asked the state of California to consider all kinds of interconnecting loads, including electric vehicle chargers, electric heat, and solar generating power, when implementing its integration capacity analysis. In January 2021, the California commission filed its petition to make changes to the analysis and its resulting map.

In California, grid users also uniquely share the cost of grid upgrades, rather than the typical ‘cost-causer pays’ model used in other states.

Automating & Simplifying the Interconnection Process

It is not possible to automate all new grid interconnections, says Zakai. Still, hosting capacity analysis could simplify many of the steps within this process. California is the first state in the country to try using hosting capacity analysis to reduce the complexity of the interconnection process.

“Hosting capacity analysis can be used to automate and increase the precision of some of the most problematic technical review processes that the utilities use when they evaluate new grid connections. Last fall, California became the first state in the country to make a final decision to use the hosting capacity analysis to automate some of these processes.”

Thanks to new rules adopted by the California Public Utilities Commission, solar developers can use the public hosting capacity maps to design and site projects with more certainty. As developers make more informed proposals, utilities will not waste resources reviewing projects that will never get built.


Read ILSR’s comments to the Minnesota Public Utilities Commission detailing how Hosting Capacity Analysis Could Simplify Grid Interconnection for Distributed Energy Resources.


Episode Notes

See these resources for more behind the story:

For concrete examples of how cities can take action toward gaining more control over their clean energy future, explore ILSR’s Community Power Toolkit.

Explore local and state policies and programs that help advance clean energy goals across the country, using ILSR’s interactive Community Power Map.


This is episode 135 of Local Energy Rules, an ILSR podcast with Energy Democracy Director John Farrell, which shares powerful stories of successful local renewable energy and exposes the policy and practical barriers to its expansion.

Local Energy Rules is Produced by ILSR’s John Farrell and Maria McCoy. Audio engineering for this episode is by Drew Birschbach.

This article originally posted at ilsr.org. For timely updates, follow John Farrell on Twitter, our energy work on Facebook, or sign up to get the Energy Democracy weekly update.

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

European wind stocks tumble after Trump says he will stop new turbine construction

Published

on

By

European wind stocks tumble after Trump says he will stop new turbine construction

A Vestas wind turbine near Baekmarksbro in Jutland. 

Afp | Getty Images

European wind power stocks tumbled Wednesday after President-elect Donald Trump said he would prevent the construction of new turbines.

“We’re going to try and have a policy where no windmills are being built,” Trump told reporters at a press conference at his Mar-a-Lago home in Florida on Tuesday afternoon.

The Danish wind turbine manufacturer Vestas Wind Systems and Danish wind developer Orsted fell about 7% Wednesday in the wake of Trump’s remarks.

The president-elect went on a lengthy attack against wind turbines during yesterday’s press conference, arguing that they are too expensive, require subsidies and lack public support.

Trump’s opposition to wind power creates further challenges for an industry that has already struggled in the face of high interest rates that have raised the cost of developing new projects more expensive. In late 2023, for example, Orsted took a $4 billion writedown and canceled two offshore wind projects off the coast of New Jersey.

Still, wind power has expanded in the U.S., growing from 2.4 gigawatts in 2000 to 150 gigawatts by April 2024, according to data from the Energy Information Administration. Electricity generation from wind hit a record in April 2024 and beat generation from coal-fired plants, according to EIA data.

Continue Reading

Environment

New DOE report finds 90% of wind turbine materials are recyclable

Published

on

By

New DOE report finds 90% of wind turbine materials are recyclable

The US Department of Energy (DOE) has released an encouraging new report revealing that 90% of wind turbine materials are already recyclable using existing infrastructure, but tackling the remaining 10% needs innovation.

That’s why the Biden administration’s Bipartisan Infrastructure Law has allocated over $20 million to develop technologies that address these challenges.

Why this matters

The wind energy industry is growing rapidly, but questions about what happens to turbines at the end of their life are critical. Recyclable wind turbines means not only less waste but also a more affordable and sustainable energy future.

According to Jeff Marootian, principal deputy assistant secretary for the Office of Energy Efficiency and Renewable Energy, “The US already has the ability to recycle most wind turbine materials, so achieving a fully sustainable domestic wind energy industry is well within reach.”

The report, titled, “Recycling Wind Energy Systems in the United States Part 1: Providing a Baseline for America’s Wind Energy Recycling Infrastructure for Wind Turbines and Systems,” identifies short-, medium-, and long-term research, development, and demonstration priorities along the life cycle of wind turbines. Developed by researchers at the National Renewable Energy Laboratory, with help from Oak Ridge and Sandia National Laboratories, the findings aim to guide future investments and technological innovations.

What’s easily recyclable and what’s not

The bulk of a wind turbine – towers, foundations, and steel-based drivetrain components – is relatively easy to recycle. However, components like blades, generators, and nacelle covers are tougher to process.

Blades, for instance, are often made from hard-to-recycle materials like thermoset resins, but switching to recyclable thermoplastics could be a game changer. Innovations like chemical dissolution and pyrolysis could make blade recycling more viable in the near future.

Critical materials like nickel, cobalt, and zinc used in generators and power electronics are particularly important to recover.

Key strategies for a circular economy

To make the wind energy sector fully sustainable, the DOE report emphasizes the adoption of measures such as:

  • Better decommissioning practices – Improving how turbine materials are collected and sorted at the end of their life cycle.
  • Strategic recycling sites – Locating recycling facilities closer to where turbines are decommissioned to reduce costs and emissions.
  • Advanced material substitution – Using recyclable and affordable materials in manufacturing.
  • Optimized material recovery Developing methods to make recovered materials usable in second-life applications.

Looking ahead

The DOE’s research also underscores the importance of regional factors, such as the availability of skilled workers and transportation logistics, in building a cost-effective recycling infrastructure. As the US continues to expand its wind energy capacity, these findings provide a roadmap for minimizing waste and maximizing sustainability.

More information about the $20 million in funding available through the Wind Turbine Technology Recycling Funding Opportunity can be found here. Submission deadline is February 11.

Read more: The California grid ran on 100% renewables with no blackouts or cost rises for a record 98 days


If you live in an area that has frequent natural disaster events, and are interested in making your home more resilient to power outages, consider going solar and adding a battery storage system. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and share your phone number with them.

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. –trusted affiliate link*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Mazda finally reveals plans to build its first dedicated EV: Here’s what we know so far

Published

on

By

Mazda finally reveals plans to build its first dedicated EV: Here's what we know so far

Mazda is finally stepping up with plans to build its first dedicated EV. The upcoming Mazda EV will be made in Japan and based on a new in-house platform. Here’s what we know about it so far.

The first dedicated Mazda EV is coming soon

Although Mazda isn’t the first brand that comes to mind when you think of electric vehicles, the Japanese automaker is finally taking a step in the right direction.

Mazda revealed on Monday that it plans to build a new module pack plant in Japan for cylindrical lithium-ion battery cells.

The new plant will use Panasonic Energy’s battery cells to produce modules and EV battery packs. Mazda plans to have up to 10 GWh of annual capacity at the facility. The battery packs will power Mazda’s first dedicated EV, which will also be built in Japan using a new electric vehicle platform.

Mazda said it’s “steadily preparing for electrification technologies” under its 2030 Management Plan. The strategy calls for a three-phase approach through 2030.

The first phase calls for using its existing technology. In the second stage, Mazda will introduce a new hybrid system and EV-dedicated vehicles in China.

Mazda-first-dedicted-EV
Mazda EZ-6 electric sedan (Source: Changan Mazda)

The third and final phase calls for “the full-fledged launch” of EVs and battery production. By 2030, Mazda expects EVs to account for 25% to 40% of global sales.

Mazda launched the EZ-6, an electric sedan, in China last October. It starts at 139,800 yuan, or around $19,200, and is made by its Chinese joint venture, Changan Mazda.

Mazda-first-dedicted-EV
Mazda EZ-6 electric sedan (Source: Changan Mazda)

Based on Changan’s hybrid platform, the electric sedan is offered in EV and extended-range (EREV) options. The all-electric model gets up to 600 km (372 miles) CLTC range with fast charging (30% to 80%) in 15 minutes.

At 4,921 mm long, 1,890 mm wide, and 1,485 mm tall with a wheelbase of 2,895 mm, Mazda’s EZ-6 is about the size of a Tesla Model 3 (4,720 mm long, 1,922 mm wide, and 1,441 mm tall with a 2,875 mm wheelbase).

Mazda-first-dedicted-EV-interior
Mazda EZ-6 interior (Source: Changan Mazda)

Inside, the electric sedan features a modern setup with a 14.6″ infotainment, a 10.1″ driver display screen, and a 50″ AR head-up display. It also includes zero-gravity reclining seats and smart features like voice control.

The EZ-6 is already off to a hot sales start, with 2,445 models sold in November. According to Changan Mazda, the new EV was one of the top three mid-size new energy vehicle (NEV) sedans of joint ventures sold in China in its first month listed.

Will Mazda’s first dedicated EV look like the EZ-6? We will find out with Mazda aiming to launch the first EV models on its new in-house platform in 2027. Stay tuned for more.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending