All 72 of the 5,000-tonne gravity-based foundations for France’s 500-megawatt (MW) Fécamp offshore wind farm are now complete.
All about the Fécamp offshore wind farm
The €2 billion ($2.25 billion) Fécamp wind farm features 71 offshore wind turbines with a capacity of 7 MW each. It will generate electricity for around 770,000 people in Normandy.
Each of Fécamp’s 71 gravity-based foundations, which were built at the Grand Port Maritime site in Le Havre, measures between 48m (157 feet) and 54m (177 feet) in height.
The Consortium of Bouygues Travaux Publicis, Saipem, and Boskalis (BSB) supplied and installed the foundations for the Fécamp offshore wind farm, which is sited between 13 and 22 km (8 and 13.6 miles) off the coast of Normandy. The first foundation was transported out to sea by barge and installed in August.
The three companies were awarded the €552 million contract in early 2020 by EDF Renewables, Canadian energy infrastructure company Enbridge, and German clean energy developer wpd Offshore. The started manufacturing Fécamp’s gravity-based foundations in December 2020.
Check out the load-out operations for these giant foundations in this short video:
Meanwhile, the wind turbines were made at the Siemens Gamesa Renewable Energy (SGRE) manufacturing plant in Le Havre and assembly is done at the Port of Cherbourg.
The Fécamp wind farm is expected to come online in 2023.
What’s a gravity-based foundation?
Gravity-based foundations for offshore wind farms are made on land of precast concrete, and they’re either taken to sea by ship or floated out. They can be sited in depths up to 30m (98 feet). The NRDC explains:
Once offshore, the gravity-based foundation is filled with water and sand, sinking the base so that it sits firmly on a layer of gravel that has been prepared on the seabed. It is then ready for the wind turbine to be installed on top of the foundation.
Windpower Engineeringexplained the advantages of gravity-based foundations:
Uses lower-cost materials like concrete and steel.
Proven technology borrowed from oil and gas industries.
Some designs do not need crane installation.
Tugboats can move port-assembled floated-to-fixed GBFs into place, reducing costs and risk.
And they also explained what’s not so good:
Seabed preparation, like dredging, is typically required. This can disturb a significant amount (up to 7%) of the wind farm’s site.
A larger installed footprint may increase the turbine’s environmental impact.
Invasive species introduction is possible when towing foundations from port to site.
UnderstandSolar is a free service that links you to top-rated solar installers in your region for personalized solar estimates. Tesla now offers price matching, so it’s important to shop for the best quotes. Click here to learn more and get your quotes. — *ad.
FTC: We use income earning auto affiliate links.More.
Wind energy powered 20% of all electricity consumed in Europe (19% in the EU) in 2024, and the EU has set a goal to grow this share to 34% by 2030 and more than 50% by 2050.
To stay on track, the EU needs to install 30 GW of new wind farms annually, but it only managed 13 GW in 2024 – 11.4 GW onshore and 1.4 GW offshore. This is what’s holding the EU back from achieving its wind growth goals.
Three big problems holding Europe’s wind power back
Europe’s wind power growth is stalling for three key reasons:
Permitting delays. Many governments haven’t implemented the EU’s new permitting rules, making it harder for projects to move forward.
Grid connection bottlenecks. Over 500 GW(!) of potential wind capacity is stuck in grid connection queues.
Slow electrification. Europe’s economy isn’t electrifying fast enough to drive demand for more renewable energy.
Brussels-based trade association WindEurope CEO Giles Dickson summed it up: “The EU must urgently tackle all three problems. More wind means cheaper power, which means increased competitiveness.”
Permitting: Germany sets the standard
Permitting remains a massive roadblock, despite new EU rules aimed at streamlining the process. In fact, the situation worsened in 2024 in many countries. The bright spot? Germany. By embracing the EU’s permitting rules — with measures like binding deadlines and treating wind energy as a public interest priority — Germany approved a record 15 GW of new onshore wind in 2024. That’s seven times more than five years ago.
If other governments follow Germany’s lead, Europe could unlock the full potential of wind energy and bolster energy security.
Grid connections: a growing crisis
Access to the electricity grid is now the biggest obstacle to deploying wind energy. And it’s not just about long queues — Europe’s grid infrastructure isn’t expanding fast enough to keep up with demand. A glaring example is Germany’s 900-megawatt (MW) Borkum Riffgrund 3 offshore wind farm. The turbines are ready to go, but the grid connection won’t be in place until 2026.
This issue isn’t isolated. Governments need to accelerate grid expansion if they’re serious about meeting renewable energy targets.
Electrification: falling behind
Wind energy’s growth is also tied to how quickly Europe electrifies its economy. Right now, electricity accounts for just 23% of the EU’s total energy consumption. That needs to jump to 61% by 2050 to align with climate goals. However, electrification efforts in key sectors like transportation, heating, and industry are moving too slowly.
European Commission president Ursula von der Leyen has tasked Energy Commissioner Dan Jørgensen with crafting an Electrification Action Plan. That can’t come soon enough.
More wind farms awarded, but challenges persist
On a positive note, governments across Europe awarded a record 37 GW of new wind capacity (29 GW in the EU) in 2024. But without faster permitting, better grid connections, and increased electrification, these awards won’t translate into the clean energy-producing wind farms Europe desperately needs.
Investments and corporate interest
Investments in wind energy totaled €31 billion in 2024, financing 19 GW of new capacity. While onshore wind investments remained strong at €24 billion, offshore wind funding saw a dip. Final investment decisions for offshore projects remain challenging due to slow permitting and grid delays.
Corporate consumers continue to show strong interest in wind energy. Half of all electricity contracted under Power Purchase Agreements (PPAs) in 2024 was wind. Dedicated wind PPAs were 4 GW out of a total of 12 GW of renewable PPAs.
If you live in an area that has frequent natural disaster events, and are interested in making your home more resilient to power outages, consider going solar and adding a battery storage system. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and share your phone number with them.
Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. –trusted affiliate link*
FTC: We use income earning auto affiliate links.More.
In the Electrek Podcast, we discuss the most popular news in the world of sustainable transport and energy. In this week’s episode, we discuss the official unveiling of the new Tesla Model Y, Mazda 6e, Aptera solar car production-intent, and more.
As a reminder, we’ll have an accompanying post, like this one, on the site with an embedded link to the live stream. Head to the YouTube channel to get your questions and comments in.
After the show ends at around 5 p.m. ET, the video will be archived on YouTube and the audio on all your favorite podcast apps:
We now have a Patreon if you want to help us avoid more ads and invest more in our content. We have some awesome gifts for our Patreons and more coming.
Here are a few of the articles that we will discuss during the podcast:
Here’s the live stream for today’s episode starting at 4:00 p.m. ET (or the video after 5 p.m. ET):
FTC: We use income earning auto affiliate links.More.
The Chinese EV leader is launching a new flagship electric sedan. BYD’s new Han L EV leaked in China on Friday, revealing a potential Tesla Model S Plaid challenger.
What we know about the BYD Han L EV so far
We knew it was coming soon after BYD teased the Han L on social media a few days ago. Now, we are learning more about what to expect.
BYD’s new electric sedan appeared in China’s latest Ministry of Industry and Information Tech (MIIT) filing, a catalog of new vehicles that will soon be sold.
The filing revealed four versions, including two EV and two PHEV models. The Han L EV will be available in single- and dual-motor configurations. With a peak power of 580 kW (777 hp), the single-motor model packs more power than expected.
BYD’s dual-motor Han L gains an additional 230 kW (308 hp) front-mounted motor. As CnEVPost pointed out, the vehicle’s back has a “2.7S” badge, which suggests a 0 to 100 km/h (0 to 62 mph) sprint time of just 2.7 seconds.
To put that into perspective, the Tesla Model S Plaid can accelerate from 0 to 100 km in 2.1 seconds. In China, the Model S Plaid starts at RBM 814,900, or over $110,000. Speaking of Tesla, the EV leader just unveiled its highly anticipated Model Y “Juniper” refresh in China on Thursday. It starts at RMB 263,500 ($36,000).
BYD already sells the Han EV in China, starting at around RMB 200,000. However, the single front motor, with a peak power of 180 kW, is much less potent than the “L” model. The Han EV can accelerate from 0 to 100 km/h in 7.9 seconds.
At 5,050 mm long, 1,960 mm wide, and 1,505 mm tall with a wheelbase of 2,970 mm, BYD’s new Han L is roughly the size of the Model Y (4,970 mm long, 1,964 mm wide, 1,445 mm tall, wheelbase of 2,960 mm).
Other than that it will use a lithium iron phosphate (LFP) pack from BYD’s FinDreams unit, no other battery specs were revealed. Check back soon for the full rundown.