Connect with us

Published

on

The International Renewable Energy Agency (IRENA) released a study on renewable energy policies for cities last month. The reason for the focus on cities is due to their ability to scale up renewables and meet emission-reduction targets. Large cities have the revenue bases, regulatory frameworks, and infrastructure to support this while smaller ones usually don’t.

The study pointed out that it’s mostly cities that are raising awareness and moving towards energy transitions. Smaller and even medium-sized cities that have 1 million or fewer inhabitants usually don’t have the funding or political support to embrace renewables, and they are also not as highly visible as megacities.

The study analyzed six medium-sized cities from China, Uganda, and Costa Rica. They were chosen due to two reasons:

  1. They have effective policies in place, or
  2. They have untapped renewable energy sources that could launch their sustainable development.

A Quick Look At The Study

The study takes a dive into the challenges and successes that are seen in the deployment of renewable energy in medium-sized cities and provides case studies of the six cities studied. A quick look at the executive summary shows that these cities have a population range from 30,000 to 1 million inhabitants.

Image courtesy of IRENA.

Altogether, cities are responsible for around 70% of global energy-related greenhouse gas emissions. Urban areas have high rates of air pollution as well, with 98% of cities with over 100,000 inhabitants in low- and middle-income countries failing to meet the World Health Organization’s (WHO’s) air quality guidelines.

Renewable energy technologies (RETs) play a central role in easing the severity of climate change while providing cleaner air. Research is often focused on the urban trends of particular sets of global megacities and doesn’t really focus any attention on cities with 1 million or fewer inhabitants, which is the fastest growing category and home to some 2.4 billion people (59% of the world’s total urban population).

Cities are motivated to promote renewables by several factors, such as:

  • Economic development and jobs.
  • Social equity.
  • Governance.
  • Air quality.
  • Secure and affordable energy.
  • Such as access to clean energy.
  • Climate stability.
  • Energy-related policymaking requires a lot of flexibility — it involves governance structures and processes as well as the diverse motivations of many stakeholders.

Image courtesy of IRENA.

Cities’ plans need to be tailored to their own circumstances, and some factors shaping city energy profiles include:

  • Demographic trends.
  • Climate zone.
  • Ownership of energy assets.
  • Settlement density.
  • Regulatory authority.
  • Institutional capacity.
  • Economic structure and wealth.

Image courtesy of IRENA.

Case Studies 1 & 2: Chongli District and Tongli Town

The two cities in this section are Chongli District and Tongli Town. In the cases of these two Chinese cities, the study found that both benefit from the availability of large-scale renewable energy projects, with wind and solar being the best options. It has a level of existing deployment which provides a solid base for the cities’ ambitious targets compared to other cities where renewables aren’t as present.

The Chinese cities benefit from the availability of financial resources that target renewable energy deployment. Tongli Town receives support from its upper-level administration, which has one of the largest revenue streams among Chinese city governments.

Tongli Town is one of the most replicable in developed cities that resemble Suzhou. Although Zhangjiakou City isn’t as wealthy as Suzhou, the Chongli District was able to receive financial support from the national government as a result of the Winter Olympics.

Its example shows that distributed renewables could also play a large role in cities. PV generation systems could be deployed outside of highly populated city centers, for example. Tongli Town also benefits from the relationship between local governments and local manufacturing industries that deploy RETs.

Showcase events such as the Winter Olympics also help a city gain visibility — this is what happened with the Chongli District. It and the Zhangjiakou Municipality linked the development targets of local renewables with the hosting arrangements of the Winter Olympics. This focused political attention and financial support on renewable energy projects.

Cross-governmental collaboration and existing manufacturing industries benefitting from renewable deployment also played key roles.

Case Studies 3 & 4: Kasese and Lugazi

This case study focused on the Ugandan cities of Kasese and Lugazi. Uganda has a variety of energy resources that includes hydropower, biomass, solar, geothermal, peat, and fossil fuels. Yet only 20% of the population has access to electricity. The World Bank estimated in 2017 that only 2% of the nation’s population has access to clean cooking fuels and technologies.

In Uganda, renewable energy deployment benefits the local communities in many ways while boosting socio-economic goals. In both Lugazi and Kasese, solar street lighting and solar home systems (SHSs) massively saved both municipalities and households while extending business hours for street sellers. It’s also improved public safety and telecommunications, which led to the creation of job opportunities.

Ugandan cities face obstacles to greater local deployment. Institutional constraints, such as narrow political mandates and tight municipal finances, present huge obstacles to effective policy action. Scaling up projects will need greater funding as well as capacity building. This requires a national enabling framework that supports the local government at the district and municipal levels. Kasese and Lugazi have benefited from initiatives targeting sustainable energy at the district level.

Financial resources for both district and municipal governments are needed. Renewables may offer savings in the long run, but the upfront costs usually surpass the funds available to Uganda’s municipalities and districts. For now, initiatives such as solar street lighting are usually linked to third-party financing support. An example of this is the World Bank’s Uganda Support to Municipal Infrastructure Development Programme.

Case Studies 5 & 6: Cartago and Grecia, and Guanacaste

Costa Rica has a population of around 5 million people and is the smallest of the three countries that were studied in the report. Some key questions discussed in the country include what role is played by the public and private sectors and what degree to which electricity generation should be based on centralized and decentralized sources. Some of the key issues and challenges that shape the nation’s efforts to promote the use of renewable energy include:

  • Mandates.
  • Strengthening cities’ ability to act with a diverse set of actors.
  • Transport as the next frontier.

For cities without the mandate, their scopes of action are limited and this is one of the main obstacles to a sustainable urban future. In the case of Cartago and Grecia, the cities have taken active measures to promote green policies in the transport and tourism sectors. Costa Rica’s “capital of renewable energy,” Guanacaste, has hosted several projects in the fields of wind, solar, and geothermal energy.

Another key lesson from the study in the case of Costa Rica is that when the share of renewables in the electricity mix is already high, transport becomes the next frontier. Compared to Columbia, Panama, and Chile, Costa Rica has a lack of municipal transport. The other countries are advancing with electric buses and other electric-mobility projects and these contrast with Costa Rica.

You can read the full 158-page report here.


Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

A 100-MW solar farm just broke ground in Wisconsin

Published

on

By

A 100-MW solar farm just broke ground in Wisconsin

National Grid Renewables has broken ground on its 100 MW Apple River Solar Project in Polk County, Wisconsin.

The Wisconsin solar farm, which will use US-made First Solar Series 6 Plus bifacial modules, will be constructed by The Boldt Company, creating 150 construction and service jobs. Apple River Solar will generate over $36 million in direct economic benefits over its first 20 years.

Once it comes online in late 2025, Apple River Solar will supply clean energy to Xcel Energy, which serves customers throughout the Upper Midwest. According to National Grid Renewables, the solar farm will generate enough energy to power around 26,000 homes annually. It will also offset about 129,900 metric tons of carbon dioxide emissions each year – equivalent to taking 30,900 cars off the road.

“We are excited to see this project begin as it underscores our dedication to delivering clean, reliable and affordable energy to our customers,” said Karl Hoesly, President, Xcel Energy-Wisconsin and Michigan. “This project is an important step in those goals while bringing significant economic benefits to Polk County and the local townships.”

Electrek reported in February that Xcel Energy, Minnesota’s largest utility, expects to cut more than 80% – and possibly up to 88% – of its emissions by 2030, putting it on track to hit Minnesota’s goal of net zero by 2040. It also says it’s on track to achieve its clean energy goals for all the Upper Midwest states it serves – Minnesota, Wisconsin, North Dakota, South Dakota, and Michigan.


To limit power outages and make your home more resilient, consider going solar with a battery storage system. In order to find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and you share your phone number with them.

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. –trusted affiliate link*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Tesla announces 500 kW charging as it finally delivers V4 Supercharger cabinets

Published

on

By

Tesla announces 500 kW charging as it finally delivers V4 Supercharger cabinets

Tesla has announced that it will finally deliver 500 kW charging as it is about to install its long-awaited V4 Supercharger cabinets.

The rollout of Supercharger V4 has been a strange one, to say the least.

Tesla has been deploying the new charging stations for two years and calling them “Supercharger V4”, but it has only been deploying the charging stalls.

Supercharger stations are made of two main parts: the stalls, which are where the charging cable is located, and the cabinets, which are generally located further back and include all the power electronics.

For all these new “Supercharger V4”, Tesla was actually using Supercharger V3 cabinets. This has been limiting the power output of the charging stations to 250 kW – although

Today, Tesla officially announced its “V4 Cabinet”, which the automaker claims will enable of “delivering up to 500kW for cars and 1.2MW for Semi.”

Here are the main features of the V4 Cabinet as per Tesla:

  • Faster charging: Supports 400V-1000V vehicle architectures, including 30% faster charging for Cybertruck. S3XY vehicles enjoy 250kW charge rates they already experience on V3 Cabinet — charging up to 200 miles in 15 minutes.
  • Faster deployments: V4 Cabinet powers 8 posts, 2X the stalls per cabinet. Lower footprint and complexity = more sites coming online faster.
  • Next-generation hardware: Cutting-edge power electronics designed to be the most reliable on the planet, with 3X power density enabling higher throughput with lower costs.

Tesla reports that its first sites with the new V4 Cabinets are going into permitting now. The company expects its first sites to open next year.

We recently reported about Tesla’s new Oasis Supercharger project, which includes larger solar arrays and battery packs to operate the charging station mostly off-grid.

Early in the deployment of the Supercharger network, Tesla promised to add solar arrays and batteries to all Supercharger stations, and Musk even said that most stations would be able to operate off-grid.

While Tesla did add solar and batteries to a few stations, the vast majority of them don’t have their own power system or have only minimal solar canopies.

Back in 2016, I asked Musk about this, and he said that it would now happen as Tesla had the “pieces now in place” with Supercharger V3, Powerpack V2, and SolarCity:

It took about 8 years, but it sounds like the pieces are now getting actually in place with Supercharger V4, Megapacks, and this new Oasis project.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Hyundai is launching an AI-powered EV next year to keep pace in China

Published

on

By

Hyundai is launching an AI-powered EV next year to keep pace in China

Hyundai has a new secret weapon it’s about ready to unleash. To revamp the brand in China and counter BYD’s surge, Hyundai is launching a new AI-powered EV next year. The new model will be Hyundai’s first dedicated electric car for the world’s largest EV market.

With the help of Haomo, a Chinese autonomous startup, Hyundai will launch its first EV equipped with generative AI. It will also be its first model designed specifically for China.

A Hyundai Motor official said (via The Korea Herald) the company is “working to load the software” onto the new EV model, “which will be released in the Chinese market next year.” The spokesperson added, “The level of autonomous driving is somewhere between 2 and 2.5.”

In comparison, Tesla’s Autopilot is considered a level 2 advanced driver assistance system (ADAS) on the SAE scale (0 to 5), meaning it offers limited hands-free features.

With Autopilot, you still have to keep your eyes on the road and hands on the steering wheel, or the system will notify you and eventually disengage.

Hyundai-AI-powered-EV
Hyundai IONIQ 5 with Waymo autonomous driving tech (Source: Hyundai)

Haomo’s system, DriveGPT, unveiled last spring, takes inspiration from the OpenAI’s popular ChatGPT.

The system can continuously update in real-time to optimize decision-making by absorbing traffic data patterns. According to Haomo, DriveGPT is used in around 20 models as it looks to play a bigger role in China.

Hyundai-AI-powered-EV
Hyundai at the Beijing Auto Show 2024 (Source: Hyundai Motor)

Hyundai hopes new AI-powered EV boosts sales in China

Electric vehicle sales continue surging in China. According to Rho Motion, China set another EV sales record last month with 1.2 million units sold, up 50% from October 2023.

Over 8.4 million EVs were sold in China in the first ten months of 2024, a notable 38% increase from last year.

Hyundai-AI-powered-EV
Hyundai IONIQ 6 (Source: Hyundai)

BYD continues to dominate its home market. According to Autovista24, BYD accounted for 32.9% of all PHEV and EV (NEV) sales in China through September, with over half of the top 20 best-selling EV models.

Tesla was second with a 6.5% share of the market, but keep in mind these numbers only include plug-in models (PHEV).

2025-Hyundai-IONIQ-5-prices
2025 Hyundai IONIQ 5 (Source: Hyundai)

Like most foreign automakers, Hyundai is struggling to keep up with the influx of low-cost electric models in China. Beijing Hyundai’s sales have been slipping since 2017. Through September, Korean automaker’s share of the Chinese market fell to just 1.2%.

Last month, Hyundai opened its first overseas digital R&D center in China to help kick off its return to the region.

According to local reports, Hyundai is partnering with other local tech companies like Thundersoft, a smart cockpit provider, and others in China to power up its next-gen EVs

With its first AI-powered EV launching next year, Hyundai hopes to turn things around in the region quickly. The new model will be one of five to launch in China through 2026.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending