Connect with us

Published

on

When mobile phones first came into existence they were big and unattractive. Several researchers then worked on making them compact and desirable. People gradually warmed up to the technology and embraced it as it allowed them to communicate on the move. There have been several advancements since, catering to various demands of the users. A group of researchers has now developed a way to make the cell phone multipurpose – you can fold it up and keep it in your pocket or wallet, stretch the screen to make it a tablet, or wrap it around your wrist like a watch.

This next step in the development of digital displays has been made possible by researchers at the McKelvey School of Engineering at Washington University. Led by Chuan Wang, Assistant Professor in the Preston M. Green Department of Electrical & Systems Engineering, the researchers have developed a new material that has the best of both technologies — LEDs and OLEDs — and a novel way to fabricate it, using an inkjet printer. Their research has been published in the journal Advanced Materials.

The researchers used the inkjet fabrication method, instead of the traditional spin art method to create a particular type of crystalline material called an organometal halide (Omh) perovskite. This organic-inorganic compound makes the display flexible. From there, the Perovskite light-emitting diodes (PeLEDs) can be recovered.

“Because it comes in a liquid form, we imagined we could use an inkjet printer,” Wang was quoted in a release published on EurekaAlert. Also, inkjet fabrication saves materials as it deposits perovskite only where it’s needed. The process is much faster, cutting time from 5 hours to 25 minutes,” said Wang.

“Imagine having a device that starts out the size of a cellphone but can be stretched to the size of a tablet”.

These PeLEDs may be just the first step in an electronics revolution. They could make walls light up or even display the day’s newspaper. They can be used to make wearable devices, like a pulse oximeter to measure blood oxygen. Most excitingly, they can allow manufacturers to print stretchable devices.


Continue Reading

Science

Smithsonian Air and Space Museum Reopens with SpaceX Rocket, Mars Habitat and More

Published

on

By

Smithsonian Air and Space Museum Reopens with SpaceX Rocket, Mars Habitat and More

Hundreds waited at the ready outside the Smithsonian’s National Air and Space Museum on Monday (July 28), when “the doors opened for access to five featured and newly renovated galleries that capture the history, contemporary status, and futuristic vision of aviation and space exploration. These refurbished spaces showcase a mix of historic and high-tech artifacts such as John Glenn’s “Friendship 7” capsule, pieces of a SpaceX Falcon 9 rocket, and a 3D-printed Mars habitat. Visitors were among the first to experience a sweeping display of innovation, housed within the museum’s revitalised main building on the National Mall in Washington, D.C.

Smithsonian’s $900M Overhaul Brings Futuristic Space Exhibits and Aviation History to Life

As per a Smithsonian statement, the reimagined exhibits are part of a $900 million full-building transformation launched in 2018, scheduled for completion by July 2026—the museum’s 50th anniversary. This phase marks the second group of reopened galleries since the start of 2022. After a three-year closure, the north entrance opened for the first time, leading visitors through a newly wing-shaped vestibule and into “Boeing Milestones of Flight Hall”, now with improved lighting, digital screens, and iconic artefacts.

Next to it, a new “Futures in Space” gallery showcases domestic exhibitions from private space companies like SpaceX, Blue Origin, Virgin Galactic, and Axiom Space. Rather than a chronological or program-based layout, the gallery explores philosophical and practical questions about space: Who decides who goes? Why do we venture out? What will we do once we arrive? The immersive layout blends historical items, contemporary designs, and even pop culture references.

The museum has reopened galleries such as “Barron Hilton Pioneers of Flight”, “World War I: The Birth of Military Aviation”, and “Allan and Shelley Holt Innovations Gallery”, and the upgraded Lockheed Martin IMAX Theatre, praised as educational and inspirational.

Despite free entry, the Smithsonian Museum reopened to more than 6,000 guests, who must pick up timed-entry passes in order to better manage crowd flow.

Continue Reading

Science

NASA’s Solar Observatory Sees Two Eclipses in One Day

Published

on

By

NASA’s Solar Observatory Sees Two Eclipses in One Day

NASA’s Solar Dynamics Observatory (SDO) has witnessed and recorded an unprecedented phenomenon of two solar eclipses in one day on July 25, 2025. These two eclipses took place only hours apart that day, and were photographed by SDO instruments pointed up and away from the Sun in geosynchronous orbit. First, around 2:45 UTC, the Moon passed between SDO and the Sun. Then, starting at about 6:30 UTC, Earth itself eclipsed the Sun from SDO’s point of view, with the Sun disappearing behind our planet shortly before 8:00 UTC. Since launching in 2010, SDO has continuously monitored the Sun’s activity, from solar flares to magnetic fields, helping forecasters predict space weather.

Moon Transit

According to NASA, SDO orbits Earth in a high geosynchronous orbit, so it has an almost constant view of the Sun. On July 25, this vantage point captured a partial solar eclipse as the Moon passed between the spacecraft and the Sun. NASA’s mission team had predicted this “lunar transit” would cover about 62% of the solar disk. Indeed, the Moon’s silhouette moved slowly across the Sun (around 2:45–3:35 UTC), blocking roughly two-thirds of the bright disk at maximum. The observatory’s ultraviolet telescope (AIA) recorded the event, revealing the Sun’s lower atmosphere and coronal loops around the sharply defined lunar edge. This transit was the deepest lunar eclipse SDO saw in 2025.

Earth’s Eclipse from Space

Hours later, on the same day, Earth itself passed between SDO and the Sun. Beginning around 6:30 UTC on July 25, our planet fully blocked the observatory’s view of the solar disk. This occurred during SDO’s regular eclipse season (a roughly three-week period twice each year when Earth’s orbit crosses the satellite’s line of sight). The total eclipse lasted until shortly before 8:00 UTC. In SDO’s images, Earth’s shadow has a fuzzy edge because our atmosphere scatters sunlight, in contrast to the Moon’s crisp eclipse.

Continue Reading

Science

NISAR Launches July 30: A NASA-ISRO Satellite to Track Earth’s Changes

Published

on

By

NISAR Launches July 30: A NASA-ISRO Satellite to Track Earth’s Changes

The NASA-ISRO Synthetic Aperture Radar (NISAR) satellite, a joint Earth science mission, is now set for launch from India’s Satish Dhawan Space Centre. The pickup-truck-sized spacecraft was encapsulated in the nose cone of an Indian Geosynchronous Satellite Launch Vehicle and is scheduled to lift off on Wednesday, July 30 at 8:10 a.m. EDT (5:40 p.m. IST). Once in orbit, its dual-frequency radars will circle Earth 14 times a day, scanning nearly all of the planet’s land and ice surfaces every 12 days. It will provide data to help scientists monitor soil moisture and vegetation, and better assess hazards like landslides and floods.

International Collaboration and Launch Readiness

According to the official website, NISAR reflects a significant NASA–ISRO partnership. NASA’s Jet Propulsion Laboratory (JPL) built the long-wavelength L-band radar, and India’s Space Applications Centre built the shorter-wavelength S-band radar. This dual-frequency design makes NISAR the first Earth satellite to carry two radar systems, underscoring the mission’s unique collaboration.

The spacecraft is now integrated into its launch vehicle at India’s Satish Dhawan Space Centre. On July 28 NASA announced NISAR had been encapsulated in the payload fairing of an ISRO Geosynchronous Satellite Launch Vehicle on the pad. The GSLV is scheduled to lift off at 8:10 a.m. EDT (5:40 p.m. IST) on Wednesday, July 30.

Advanced Dual-Frequency Radar

NISAR carries a novel dual-frequency radar system. The satellite’s instruments operate at L-band (25 cm) and S-band (10 cm) wavelengths. The longer L-band waves can penetrate forests and soil to sense moisture and land motion, while the shorter S-band waves pick up fine surface details like vegetation moisture and roughness. This combination lets NISAR detect both large-scale and fine-scale changes.

From orbit, NISAR will circle Earth 14 times per day, scanning nearly all land and ice surfaces twice every 12 days. Its data will track changes like the advance or retreat of polar ice sheets and slow ground shifts from earthquakes, and will also aid agriculture and disaster planning by helping monitor crops and prepare for floods and hurricanes.

Continue Reading

Trending