Connect with us

Published

on

XPeng Motors kept things relatively short but sweet during its 20-minute presentation at the 2024 Beijing International Auto Show earlier today, but there’s a lot to get excited about following several updates from XPeng founder, chairman, and CEO He Xiaopeng, including an “entirely new breed” of EVs under a new sub-brand. Here’s the full recap.

Today’s presentation in front of a crowd in Beijing (you can view it in its entirety below) started off simply recapping much of the same news we reported on in 2024, some of it dating back to the Chinese automaker’s annual Tech Day in October 2023.

XPeng CEO He Xiaopeng spoke in front of an X9 multi-purpose vehicle (MPV), a growing segment of luxury minivans in China. Xiaopeng highlighted much of the early success of XPeng’s first MPV model, which is versatile in that it can be configured to seat seven passengers or four, with room to transport five bikes.

As a popular BEV model amongst Chinese celebrities and athletes, XPeng’s CEO used the X9 as the vessel to highlight some of the advanced technologies it has been working on, including expansions of its XNGP ADAS technology, including new AI Valet and bodyguard functions. The automaker’s founder and chairman spoke to these technologies and what they mean for the future of EVs:

We are proud to demonstrate XPeng’s technological innovation prowess, through which we are laying a pathway to greater inclusion and equality in smart mobility. The next decade will be a ‘golden decade’ of smart vehicles. The core of smart vehicle advances is how to operate with automative software adoption emerging as the new industry norm. Looking ahead, XPeng will roll out the on-road testing of AI-powered functions integrated into XPeng models.

  • XPeng Beijing
  • XPeng Beijing

To support XNGP and other ADAS functions, XPeng used the Beijing Auto Show to share plans to deploy what it calls the “industry’s first mass-produced 2K pure visual neural network large model in vehicles.” This news confirms previous rumors we reported that XPeng was abandoning LiDAR sensors in favor of pure vision, similar to Tesla FSD.

These upgrades to perception and planning/control models will utilize over two million high-definition grids to reconstruct worlds around XPeng BEVs, ensuring that any and all surrounding objects and obstacles are identified quickly and effectively. The new technology is further supported by neural-network-based planning models, which can learn, think, and perform actions like the human mind.

According to the Beijing press conference, such neural technologies enable XPeng to deliver more human-like, self-learning vehicles that will rely heavily on AI moving forward. That includes the automaker’s latest operating system, XOS 5.1.0, which delivers several new AI-powered features to debut in the X9 before reaching other eligible XPeng EVs on May 20, 2024.

Those updates include the previously mentioned AI Valet Driver, upgraded surround reality (SR) perception capabilities, ask expanded function and learning capabilities of the automaker’s in-car AI assistant. We recommend checking out the video below for a real-world view of this technology being demonstrated.

XPeng’s new sub-brand will be called MONA

Last month, we shared news that XPeng had plans for a new EV sub-brand that focused heavily on artificial intelligence, as mentioned above, and well beyond. During the recent China Electric Vehicle 100 Summit, XPeng Chairman and CEO He Xiaopeng vowed to invest RMB 3.5 billion (~$492M) in the automaker’s “AI-enabled smart driving” technology in 2024 for R&D and the hiring of 4,000 new employees.

Xiaopeng also said the next decade of EVs will be one of intelligence and smart driving technology. As such, the new brand was in the works to deliver AI-centric tech at an affordable price for all, targeting MSRPs around RMB 100,000-150,000 ($14,000-$21,000).

At the time, we reported the unnamed sub-brand would launch in China soon as XPeng promised it will “create a new breed of AI-powered Smart EVs for young customers worldwide.” Today in Beijing, XPeng confirmed the new sub-brand is called MONA, which stands for “Made Of New AI.”

The company’s CEO said MONA will officially be introduced this June, so stay tuned for more details on that.

Last but not least, XPeng shared updates in regard to its charging technology, low-altitude flying car arm AeroHT, and its recent cooperation agreement signed with Volkswagen Group. On the charging side of things, XPeng says it is planning to upgrade its 800 kW DC fast chargers in Q3 2024, enabling what could potentially be the best charge speeds in the industry.

The automaker says the upgrades to the facilities will enable XPeng EVs to add more than 1 km (.62 miles) per second. AeroHT’s flying car was on display next to other XPeng EVs in Beijing after turning plenty of heads at CES in January. The eVTOL arm’s other vehicle, the modular flying car, is still seeking airworthiness certification and is expected to begin pre-sales in China in Q4 2024.

That’s all for now. As promised, here is the full XPeng press conference from the Beijing Auto Show, translated to English:

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

US Gov’t set to spend $46 million to electrify container ports

Published

on

By

US Gov't set to spend  million to electrify container ports

Multi-million-dollar grants adding up to more than $46 million from the US Federal Highway Administration (FHWA) will help support electrification efforts at several American ports.

The Long Beach Container Terminal (LBCT) in Long Beach, California has received a $34.9 million grant from the FHWA to replace 155 on-site commercial trucks and buses with zero-emission vehicles (ZEV). The grant will fund both the purchase of new electric trucks and the necessary charging infrastructure to support them.

LBCT said the grant dollars will allow it to continue its multi-billion dollar investments in more sustainable logistical operations. “Our vehicle electrification project, coupled with previous investments, enables LBCT to achieve a unique status that is reframing the way the world views sustainable goods movement, enhancing community quality of life and climate change,” said Anthony Otto, CEO of LBCT.

Real progress at Port of Long Beach

Long Beach Container Terminal, photo by LBCT.

Back in 2018, Power Progress reported that the Port of Long Beach had plans to install zero-emissions cranes and cargo handling equipment at its terminals. True to its word, the port has invested more than $2.5 billion to convert its cranes and terminal tractors vehicles to electric equipment. It’s a project that LBCT says has led to an 86 percent (!) reduction in harmful carbon emissions.

“This investment is a huge win for clean air, electrification and the region,” said US House Rep. Robert Garcia. “These federal dollars will make our port cleaner, safer and help us meet our climate goals.”

In a separate announcement, charging infrastructure operator Voltera said that its sites in California and Georgia would receive $11.4 million of the FHWA funding.

Electrek’s Take

No matter what you call it… …yard dog, yard truck, terminal truck, hostler, spotter, shunt truck, yard horse, goat, mule … …Orange EV pure electric trucks deliver.
e-Triever terminal tractor; via Orange EV.

Container ports used to be some of the dirtiest, most heavily polluted areas in the world. That was bad for everyone – but it was especially bad for the people who lived and worked near them. That’s why any positive change is good. Beyond just “positive change,” however, ports today seem to be leading the way when it comes to electric vehicle and hydrogen adoption.

How things change!

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Kramer shows off electric wheel loader and telehandler at Intermat

Published

on

By

Kramer shows off electric wheel loader and telehandler at Intermat

German equipment manufacturer Kramer showed off a pair of zero-emission equipment options at the Paris Intermat show last week – the 5065e electric wheel loader and 1445e electric telehandler.

Kramer says the quiet operation of its new electric wheel loader and telehandler are ideal for noise-sensitive areas such as city centers, cemeteries and golf courses, hotels, and suburban parks and recreation areas, where it can operate without emitting harmful diesel particulate matter and other forms of air pollution.

Kramer-Werke GmbH is serious about promoting its new EVs in the French market. “That’s why Intermat is an important platform for us,” explains Christian Stryffeler, Kramer’s Managing Director. “We are also looking forward to showcasing our new generation of (electric) wheel loaders and telescopic wheel loaders here.”

Kramer 5065e wheel loader

The 5065e loader is powered a 37.5 kWh, 96V lithium-ion battery that’s good for up to four hours of continuous operation – which is a lot more than it sounds, considering idle time in an EV doesn’t drain batteries the way idling a diesel drains fuel. A 23 kW (30 hp) electric motor drives the electric wheel loader around the job site, while a 25 kW (approx. 35 hp) motor powers the machine’s 40 liters hydraulic system.

Kramer says the battery on its electric loader can be fully charged in just 5.1 hours using a “Type 2 Wallbox” (that’s an L2 charger to you and me). Max payload is 1750 kg, with a 2800 kg tipping load. Top speed is 20 km/h (approx. 12.5 mph).

Kramer 1445e telehandler

The 1445e telehandler uses a 96V battery architecture that’s similar to the one in the wheel loader, but in a smaller 18 kWh or 28 kWh pack. This enables a fleet manager to right-size their equipment’s batteries to provide four hours of run time in different types of work environments. And, also like the wheel loader, a 23 kW (30 hp) electric motor provides the drive while a 25 kW (approx. 35 hp) powers the hydraulics.

Level 2 charging comes standard on Kramer’s electric telehandler, enabling a full charge of the larger, 28 kWh battery in about five hours. Max payload is 1450 kg.

Electrek’s Take

Kramer 5056e electric wheel loader; image via Kramer.

It’s always good to see more manufacturers pushing out electric equipment options. It’s still the “wild west” out there, even more so than in automotive, and Kramer’s offerings seem to be a step behind in some ways (no DCFC capability) and ahead in others (96V where others are 48V), so it’s hard to know where they stand.

More than anything, the lesson seems to be that fleet managers need to choose wisely when they choose to electrify – and work closely with the dealers and OEMs to ensure that they’re buying the right tool for the right job.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Watch this autonomous excavator build a 215 foot retaining wall [video]

Published

on

By

Watch this autonomous excavator build a 215 foot retaining wall [video]

The robotics experts at ETH Zurich have developed an autonomous excavator that uses advanced AI to help it complete high-skill tasks without a human operator.

Dry stone wall construction typically involves huge amounts of operator labor. Doing it right requires not just hours of labor, but hours of skilled, experienced labor. At least, it used to. If the crew at ETH is successful, building stone retaining walls will soon become a “set it and forget it” task for robots to complete. Robots like their HEAP excavator.

HEAP (Hydraulic Excavator for an Autonomous Purpose) is a customized Menzi Muck M545 developed for autonomous operation that uses electrically-driven hydraulics to operate an advanced boom arm equipped with draw wire encoders, LiDAR, Leica iCON site-mapping, and a Rototilt “wrist” on the end that makes it look more like a high-precision robotic arm than a traditional heavy equipment asset.

ETH HEAP tech stack

Image via ETH Zürich.

Which makes sense. After all: the ETH guys are roboticists, not skilled heavy equipment operators. So, how does their robot do against skilled operators?

“We are currently outperformed by human excavator operators in placement speed,” ETH researchers wrote in Science Robotics. “Such operators, however, typically require string and paint references with which to register their construction and often a second or third person outside the machine to provide guidance and to insert small supporting stones, gravel, and soil by hand and shovel. In contrast, our process can build complex nonplanar global surface geometries without physical reference markers, does not require a skilled driver or small supporting stones, and provides a full digital twin of the built structure for better accountability and future reuse.”

Translation: the robot is slower, but it gets the job done.

You can watch the ETH HEAP put all its onboard tech to work building a 215 foot long, 20 foot high retaining wall all on its own in the video, below.

Autonomous excavator constructs dry stone wall

The completed project can be seen at Circularity Park in Oberglatt, Switzerland, and illustrates the potential for autonomous equipment to build with irregularly-shaped materials. And with skilled operators in short supply everywhere, the potential to free up operators so they can go where they’re really needed.

Electrek’s Take

ETH Zürich’s robot excavator has been in development for years, with numerous white papers exploring its potential uses in construction and agriculture published on the company’s site. It’s quite a rabbit hole, as internet deep-dives go, and I highly recommend it.

That said, the electrically driven hydraulics and high-precision Rototilt wrist on the end of the boom arm’s “claw” alone make this futuristic excavator worth some attention. As more and more manufacturers switch to full electric or even “just” electric drive, research into better solutions for existing hydraulic equipment and expertise could lead to big market wins.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending